Câu 6 trang 221 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho ba điểm A, B, C. Gọi ĐA, ĐB, ĐC là các phép đối xứng tâm có tâm lần lượt là A, B và C. Chứng minh rằng hợp thành của ba phép đối xứng tâm nói trên là một phép đối xứng tâm.

Lời giải chi tiết

 

Gọi F là phép hợp thành của ba phép đối xứng ĐA, ĐB và ĐC. Gọi M là điểm bất kì sao cho M1 = ĐA(M), M2 = ĐB(M1), M’ = ĐC(M2), có nghĩa là các điểm A, B, C lần lượt là trung điểm các đoạn \(M{M_1},{M_1}{M_2},{M_2}M'\)

Từ đó nếu ta gọi D là trung điểm của đoạn thẳng MM’ thì \(\overrightarrow {C{\rm{D}}}  = \overrightarrow {BA} \), tức D là điểm xác định không phụ thuộc vào M. Theo định nghĩa của phép hợp thành F thì F biến điểm M thành điểm M’. Vì D là trung điểm của MM’ nên F là phép đối xứng tâm với tâm là D.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved