Đề bài
Cho hai đường thẳng chéo nhau \(d\) và \(d’\). Đoạn thẳng \(AB\) có độ dài \(a\) trượt trên \(d\), đoạn thẳng \(CD\) có độ dài \(b\) trượt trên \(d’\). Chứng minh rằng khối tứ diện \(ABCD\) có thể tích không đổi.
Lời giải chi tiết
Gọi \(h\) là độ dài đường vuông góc chung của \(d\) và \(d’\), \(α\) là góc giữa hai đường thẳng \(d\) và \(d’\). Qua \(B, A, C\) dựng hình bình hành \(BACF\). Qua \(A,C, D\) dựng hình bình hành \(ACDE\).
Khi đó \(CFD.ABE\) là một hình lăng trụ tam giác. Ta có:
\[\begin{array}{l}
{V_{D.ABE}} + {V_{D.BACF}} = {V_{CFD.ABE}}\\
{V_{D.ABE}} = \dfrac{1}{3}{V_{CFD.ABE}} \Rightarrow {V_{D.BACF}} = \dfrac{2}{3}{V_{CFD.ABE}}\\
{V_{D.ABC}} = \dfrac{1}{2}{V_{D.BACF}} \Rightarrow {V_{D.ABC}} = \dfrac{1}{2}.\dfrac{2}{3}{V_{CFD.ABE}} = \dfrac{1}{3}{V_{CFD.ABE}}
\end{array}\]
Kẻ \(AH \bot \left( {CDF} \right)\) ta có: \({V_{ABCD}} = \dfrac{1}{3}.V_{CFD.ABE} = \dfrac{1}{3}.AH.{S_{CDF}}\)
Ta có:
\(\begin{array}{l}AB//CF \Rightarrow AB//\left( {CDF} \right) \supset CD\\\Rightarrow d\left( {d;d'} \right) = d\left( {AB;CD} \right) = d\left( {AB;\left( {CDF} \right)} \right) \end{array}\)
\(= d\left( {A;\left( {CDF}\right)} \right) = AH = h\)
\(AB//CF \Rightarrow \widehat {\left( {d;d'} \right)} = \widehat {\left( {AB;CD} \right)} = \widehat {\left( {CF;CD} \right)} = \widehat {DCF} = \alpha \)
\( \Rightarrow {S_{CDF}} = \dfrac{1}{2}.CD.CF.\sin \widehat {DCF} = \dfrac{1}{2}ab\sin \alpha \)
Vậy \(V_{ABCD}=\dfrac{1}{3}.h.\dfrac{1}{2}ab\sin \alpha =\dfrac{1}{6}.h. ab. sinα = const\). (đpcm)
Đề kiểm tra giữa học kì 1
Đề kiểm tra 45 phút - Chương 3 – Hóa học 12
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Sinh học lớp 12
Bài 14. Sử dụng và bảo vệ tài nguyên thiên nhiên
CHƯƠNG 9. QUẦN XÃ SINH VẬT