Đề bài
Phương trình \(\cos x = \sin x\) có số nghiệm thuộc đoạn \([-π, π]\) là:
(A). \(2\) (B). \(4\)
(C). \(5\) (D). \(6\)
Phương pháp giải - Xem chi tiết
Đưa phương trình về dạng phương trình cơ bản của hàm tan.
Lời giải chi tiết
Ta có: \(\sin x = \cos x \Leftrightarrow \tan x = 1 \) \(\Leftrightarrow x = \dfrac{\pi }{4} + k\pi \,\,\left( {k \in Z} \right)\)
Vì \(x ∈ [-π, π]\) nên:
\( - \pi \le \dfrac{\pi }{4} + k\pi \le \pi \Leftrightarrow - 1 \le \dfrac{1}{4} + k \le 1 \)
\(\Leftrightarrow - \dfrac{5}{4} \le k \le \dfrac{3}{4}\)
Ta có: \(k ∈ \mathbb{Z}\) nên \(k ∈ \left\{ { - 1;0} \right\}\).
Suy ra phương trình đã cho có hai nghiệm thuộc \([-π, π]\) là \(x = - \dfrac{{3\pi }}{4};x = \dfrac{\pi }{4}\)
Chọn đáp án A.
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
Bài 7: Sulfuric acid và muối sulfate
Unit 1: Generation gaps and Independent life
Chương V. Giới thiệu chung về cơ khí động lực
Unit 6: High-flyers
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11