Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Mặt bên SAB là tam giác cân tại S và mp(SAB) vuông góc với mp(ABCD), cạnh SC tạo với mặt phẳng đáy góc α. Tính:
a) Chiều cao của hình chóp S.ABCD;
b) Khoảng cách từ chân đường cao hình chóp đến mặt phẳng (SCD);
c) Diện tích thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng trung trực của cạnh BC.
Lời giải chi tiết
a) Gọi H là trung điểm của AB thì \(SH \bot AB\), từ đó \(SH \bot \left( {ABC{\rm{D}}} \right)\). Vậy khoảng cách từ S đến mp(ABCD) là SH, đó là chiều cao của hình chóp.
Ta có \(SH = HC\tan \alpha \),
mặt khác \(H{C^2} = B{H^2} + B{C^2} = {{5{{\rm{a}}^2}} \over 4}\).
hay \(HC = {{a\sqrt 5 } \over 2}\).
Vậy \(SH = {{a\sqrt 5 } \over 2}\tan \alpha \).
b) Gọi K là trung điểm của CD thì \(C{\rm{D}} \bot \left( {SHK} \right)\), từ đó \(\left( {SC{\rm{D}}} \right) \bot \left( {SHK} \right)\). Vậy nếu kẻ đường cao HI của tam giác SHK thì HI là khoảng cách từ H đến mp(SCD). Ta có:
\(\eqalign{ & HI = {{H{\rm{S}}.HK} \over {SK}} = {{{{a\sqrt 5 } \over 2}\tan \alpha .a} \over {\sqrt {{{5{{\rm{a}}^2}} \over 4}{{\tan }^2}\alpha + {a^2}} }} \cr & = {{a\sqrt 5 \tan \alpha } \over {\sqrt {5{{\tan }^2}\alpha + 4} }} \cr} \)
c) Vì SH và CD cùng vuông góc với BC nên SH, CD song song với mặt phẳng trung trực (R) của BC. Khi đó:
\(\left( R \right) \cap \left( {ABC{\rm{D}}} \right) = MN\) với MN // CD và M, N lần lượt là trung điểm của BC, AD.
\(\left( R \right) \cap \left( {SHK} \right) = EF\), EF // SH, E là trung điểm của MN.
\(\left( R \right) \cap \left( {SC{\rm{D}}} \right) = PQ\), PQ đi qua điểm F và PQ // CD. Thiết diện MNPQ là hình thang cân.
Ta có
\(\eqalign{ & {S_{MNPQ}} = {1 \over 2}\left( {MN + PQ} \right).EF \cr & = {1 \over 2}\left( {a + {a \over 2}} \right).{{a\sqrt 5 } \over 4}\tan \alpha \cr & = {{3{a^2}\sqrt 5 } \over {16}}\tan \alpha \cr} \).
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 11
Chủ đề 2: Kĩ thuật đánh cầu trên lưới
Unit 3: Cities
Bài 1: Mở đầu về cân bằng hóa học
Bài 9: Tiết 2: Các ngành kinh tế và các vùng kinh tế Nhật Bản - Tập bản đồ Địa lí 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11