ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 7 trang 107 SGK Đại số và Giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
Lg b
LG c

Xét tính tăng, giảm và bị chặn của các dãy số \((u_n)\), biết:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
Lg b
LG c

LG a

\({u_n} = n + {1 \over n}\)

Phương pháp giải:

*) Xét hiệu \({u_{n + 1}} - {u_n}\).

Nếu hiệu trên dương thì dãy số là dãy số tăng.

Nếu hiệu trên âm thì dãy số là dãy số giảm.

Nếu hiệu trên bằng 0 thì dãy số là dãy không đổi.

*) Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số \(M\) sao cho \({u_n} \le M\,\,\forall n \in {N^*}\).

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số \(m\) sao cho \({u_n} \ge m\,\,\forall n \in {N^*}\).

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số \(M,m\) sao cho \(m \le {u_n} \le M\,\,\forall n \in {N^*}\).

Lời giải chi tiết:

Xét hiệu:

\(\begin{array}{l}
\,\,\,\,{u_{n + 1}} - {u_n}\\
= \left( {n + 1 + \frac{1}{{n + 1}}} \right) - \left( {n + \frac{1}{n}} \right)\\
= n + 1 + \frac{1}{{n + 1}} - n - \frac{1}{n}\\
= 1 + \frac{1}{{n + 1}} - \frac{1}{n}\\
= \frac{{{n^2} + n + n - n - 1}}{{n\left( {n + 1} \right)}} = \frac{{{n^2} + n - 1}}{{n\left( {n + 1} \right)}} > 0\,\,\forall n \in {N^*}
\end{array}\)

Do \(n^2+n-1 \ge 1^2+1-1=1>0\) và n(n+1) > 0 với \(\forall n\in N^*\)

Suy ra: \(u_n\) là dãy số tăng.

Mặt khác: \({u_n} = n + {1 \over n} \ge 2\sqrt {n.{1 \over n}}  = 2,\forall n \in {N^*}\) \(\Rightarrow u_n\) là dãy số bị chặn dưới.

Khi \(n\) càng lớn thì \(u_n\) càng lớn nên \(u_n\) là dãy số không bị chặn trên.

Vậy \(u_n\) là dãy số tăng và bị chặn dưới.

Lg b

\({u_n} = {( - 1)^{n-1}}\sin {1 \over n}\)

Lời giải chi tiết:

Ta có:

 \(u_1= (-1)^{1-1}\sin 1 = \sin 1 > 0\)

\(\eqalign{& {u_2} = {\left( { - 1} \right)^{2-1}}.\sin {1 \over 2} = - \sin {1 \over 2} < 0 \cr & {u_3} = {( - 1)^{3-1}}.\sin {1 \over 3} = \sin {1 \over 3} > 0 \cr} \)

\( \Rightarrow u_1 > u_2\) và \(u_2< u_3\)

Vậy \(u_n\) là dãy số không tăng không giảm.

Ta lại có: \(\left| {{u_n}} \right| = \left| {{{\left( { - 1} \right)}^{n - 1}}\sin \frac{1}{n}} \right| = \left| {\sin \frac{1}{n}} \right| \le 1 \)\(\Leftrightarrow  - 1 \le {u_n} \le 1\)

Vậy \(u_n\) là dãy số bị chặn.

Cách khác:

Với \(n \ge 1\) thì \(0 < \frac{1}{n} < 1 < \frac{\pi }{2} \Rightarrow \sin \frac{1}{n} > 0,\forall n\)

Suy ra: Với \(n\) chẵn \( \Rightarrow {\rm{ }}n-1\) lẻ

\( \Rightarrow {\rm{ }}{\left( { - 1} \right)^{n-1}}\; =  - 1{\rm{ }} \Rightarrow {\rm{ }}{u_n}\; < 0\)

Với \(n\) lẻ \( \Rightarrow {\rm{ }}n-1\) chẵn

\[\begin{array}{*{20}{l}}
{ \Rightarrow {{\left( { - 1} \right)}^{n - - 1}}\; = 1 \Rightarrow {u_n}\; > 0.}\\
{ \Rightarrow {u_1}\; > {u_2}\; < {u_3}\; > {u_4}\; < {u_5}\; > {u_{6\;}} \ldots }
\end{array}\]

\( \Rightarrow {\rm{ }}({u_n})\) không tăng không giảm.

\( \Rightarrow \;{\left( { - 1} \right)^{n{\rm{ }}-{\rm{ }}1}}\; = {\rm{ }} - 1\; \Rightarrow \;{u_n}\; < {\rm{ }}0\)

LG c

\({u_n} = \sqrt {n + 1}  - \sqrt n \)

Lời giải chi tiết:

Ta có:

\({u_n} = \sqrt {n + 1}  - \sqrt n  \) \( = \frac{{\left( {\sqrt {n + 1}  - \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }} \)\(= {{n + 1 - n} \over {\sqrt {n + 1}  + \sqrt n }} \) \(= {1 \over {\sqrt {n + 1}  + \sqrt n }}\)

Xét hiệu:

\(\eqalign{
& {u_{n + 1}} - {u_n} \cr&= {1 \over {\sqrt {(n + 1) + 1} + \sqrt {n + 1} }} - {1 \over {\sqrt {n + 1} + \sqrt n }} \cr 
& = {1 \over {\sqrt {n + 2} + \sqrt {n + 1} }} - {1 \over {\sqrt {n + 1} + \sqrt n }} \cr} \) 

Ta có:

\(\left\{ \matrix{
\sqrt {n + 2} > \sqrt {n + 1} \hfill \cr 
\sqrt {n + 1} > \sqrt n \hfill \cr} \right. \)

\(\Rightarrow \sqrt {n + 2} + \sqrt {n + 1} > \sqrt {n + 1} + \sqrt n > 0\)

\( \Rightarrow {1 \over {\sqrt {n + 2}  + \sqrt {n + 1} }} < {1 \over {\sqrt {n + 1}  + \sqrt n }} \)

\(\Rightarrow {u_{n + 1}} - {u_n} < 0\)

\(\Rightarrow {u_n}\)  là dãy số giảm.

Mặt khác: \({u_n} = {1 \over {\sqrt {n + 1}  + \sqrt n }} > 0,\forall n \in N^*\) \(\Rightarrow {u_n}\) là dãy số bị chặn dưới.

Ta lại có: với \(n \ge 1\) thì \(\sqrt {n + 1}  + \sqrt n  \ge \sqrt 2  + 1\)

\(\Rightarrow {u_n} = {1 \over {\sqrt {n + 1}  + \sqrt n }} \le {1 \over {\sqrt 2  + 1}}\)

Suy ra: \(u_n\) là dãy số bị chặn trên.

Vậy \(u_n\) là dãy số giảm và bị chặn.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved