GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Câu 7 trang 210 sách bài tập Giải tích 12 Nâng cao

Đề bài

Cho ba số \(\ln a,\ln b,\ln c\) (a, b, c dương và khác 1) lập thành một cấp số nhân. Chứng minh rằng ba số \({\log _a}x,{\log _b}x,{\log _c}x\) (a, b, c dương và khác 1) theo thứ tự đó cũng lấp thành một cấp số nhân.

Lời giải chi tiết

Từ giả thiết \(\ln a,\ln b,\) lập thành cấp số nhân, suy ra \({\ln ^2}b = \ln a.\ln c\)

            \({{\ln x} \over {\ln a}}.{{\ln x} \over {\ln c}} = {{{{\ln }^2}x} \over {{{\ln }^2}b}}\)

Dùng công thức đổi cơ số, ta có:

            \({\log _a}x.{\log _c}x = \log _b^2x\)

Từ đó suy ra \({\log _a}x,{\log _b}x,{\log _c}x\) lập thành một cấp số nhân.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved