Bài 7 trang 6 SBT Hình Học 11 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Trong mặt phẳng tọa độ Oxy, cho phép tịnh tiến T theo vecto \(\overrightarrow u \left( {1; - 2} \right)\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Viết phương trình ảnh của mỗi đường thẳng sau đây qua phép tịnh tiến T.

i) Đường thẳng a có phương trình \(3x - 5y + 1 = 0\).

ii) Đường thẳng b có phương trình \(2x + y + 100 = 0\)

Lời giải chi tiết:

Biểu thức tọa độ của phép tịnh tiến T là \(\left\{ \matrix{
x' = x + 1 \hfill \cr 
y' = y - 2 \hfill \cr} \right.\) suy ra: \(x = x' - 1,\,y = y' + 2.\)

i) Nếu M(x;y) nằm trên đường thẳng a thì \(3x - 5y+1 = 0\)

hay \(3\left( {x' - 1} \right) - 5\left( {y' + 2} \right) + 1 = 0 \)

\(\Leftrightarrow 3x' - 5y' - 12 = 0\).

Điều đó chứng tỏ điểm M' thỏa mãn phương trình \(3x - 5y - 12 = 0\).

Đó là phương trình ảnh của đường thẳng a.

ii) Đường thẳng b có vecto chỉ phương là \(\overrightarrow u \left( {1; - 2} \right)\) nên phép tịnh tiến T biến b thành chính nó.

Vậy ảnh của b cũng có phương trình \(2x + y + 100 = 0\).

LG b

LG b

Viết phương trình ảnh của đường tròn \({x^2} + {y^2} - 4x + y - 1 = 0\) qua phép tịnh tiến T.

Lời giải chi tiết:

Nếu \(M\left( {x;y} \right)\) nằm trên đường tròn đã cho thì

\(\eqalign{
& {x^2} + {y^2} - 4x + y - 1 = 0 \cr 
& \Leftrightarrow {\left( {x' - 1} \right)^2} + {\left( {y' + 2} \right)^2} - 4\left( {x' - 1} \right) \cr&\;\;\;\;\;+ \left( {y' + 2} \right) - 1 = 0 \cr 
& \Leftrightarrow x{'^2} + y{'^2} - 6x' + 5y' + 10 = 0 \cr} \)

Như vậy điểm M'(x';y') thỏa mãn phương trình \({x^2} + {y^2} - 6x + 5y + 10 = 0\). Đó là phương trình đường tròn ảnh của đường tròn đã cho.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved