Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Trong mặt phẳng tọa độ Oxy, cho phép tịnh tiến T theo vecto \(\overrightarrow u \left( {1; - 2} \right)\).
LG a
LG a
Viết phương trình ảnh của mỗi đường thẳng sau đây qua phép tịnh tiến T.
i) Đường thẳng a có phương trình \(3x - 5y + 1 = 0\).
ii) Đường thẳng b có phương trình \(2x + y + 100 = 0\)
Lời giải chi tiết:
Biểu thức tọa độ của phép tịnh tiến T là \(\left\{ \matrix{
x' = x + 1 \hfill \cr
y' = y - 2 \hfill \cr} \right.\) suy ra: \(x = x' - 1,\,y = y' + 2.\)
i) Nếu M(x;y) nằm trên đường thẳng a thì \(3x - 5y+1 = 0\)
hay \(3\left( {x' - 1} \right) - 5\left( {y' + 2} \right) + 1 = 0 \)
\(\Leftrightarrow 3x' - 5y' - 12 = 0\).
Điều đó chứng tỏ điểm M' thỏa mãn phương trình \(3x - 5y - 12 = 0\).
Đó là phương trình ảnh của đường thẳng a.
ii) Đường thẳng b có vecto chỉ phương là \(\overrightarrow u \left( {1; - 2} \right)\) nên phép tịnh tiến T biến b thành chính nó.
Vậy ảnh của b cũng có phương trình \(2x + y + 100 = 0\).
LG b
LG b
Viết phương trình ảnh của đường tròn \({x^2} + {y^2} - 4x + y - 1 = 0\) qua phép tịnh tiến T.
Lời giải chi tiết:
Nếu \(M\left( {x;y} \right)\) nằm trên đường tròn đã cho thì
\(\eqalign{
& {x^2} + {y^2} - 4x + y - 1 = 0 \cr
& \Leftrightarrow {\left( {x' - 1} \right)^2} + {\left( {y' + 2} \right)^2} - 4\left( {x' - 1} \right) \cr&\;\;\;\;\;+ \left( {y' + 2} \right) - 1 = 0 \cr
& \Leftrightarrow x{'^2} + y{'^2} - 6x' + 5y' + 10 = 0 \cr} \)
Như vậy điểm M'(x';y') thỏa mãn phương trình \({x^2} + {y^2} - 6x + 5y + 10 = 0\). Đó là phương trình đường tròn ảnh của đường tròn đã cho.
CHƯƠNG VII: HIĐROCABON THƠM. NGUỒN HIĐROCABON THIÊN NHIÊN
Chương 2: Nitrogen và sulfur
Chủ đề 2. Công nghệ giống vật nuôi
Unit 11: Sources Of Energy - Các nguồn năng lượng
Chuyên đề 11.1. Phân bón
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11