Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp S.ABCD có đáy là một tứ giác lồi. Gọi M, I, J, O lần lượt là trung điểm của SD, AB, CD, IJ.
a) Chứng minh rằng nếu \({G_1},\,{G_2}\) lần lượt là trọng tâm của tam giác SAB và ABC thì \({G_1}{G_2}//MJ.\)
b) Chứng minh rằng tâm đường thẳng mà mỗi đường thẳng đi qua trung điểm của một cạnh hình chóp và trọng tâm của tam giác tạo bởi ba đỉnh hình chóp không nằm trên cạnh nói trên đồng quy tại một điểm G.
c) Chứng minh rằng điểm G nằm trên đoạn thẳng SO và GS = 4GO.
Lời giải chi tiết
a) Ta có:
\({{I{G_1}} \over {IS}} = {{I{G_2}} \over {IC}} = {1 \over 3} \Rightarrow {G_1}{G_2}//SC\)
Mặt khác MJ là đường trung bình của tam giác DSC nên MJ//SC. Từ đó, suy ra \({G_1}{G_2}//MJ.\)
b) Rõ ràng tám đường thẳng đã cho không đồng phẳng; ta chỉ cần chứng minh chúng cắt nhau từng đôi.
Lấy hai đường thẳng bất kì trong tám đường thẳng trên (chẳng hạn như hai đường thẳng \(M{G_2}\) và \(J{G_1}\)). Theo câu a) thì \({G_1}{G_2}//MJ,\) do đó \(M{G_2}\) và \(J{G_1}\) cắt nhau.
Vậy theo bài 68 (chương II), ta có tám đường thẳng đã cho không đồng phẳng và từng đôi cắt nhau nên chúng đồng quy tại một điểm G.
c) Xét mp(ABCD). Dễ thấy:
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)
\( \Rightarrow \overrightarrow {OD} = - \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) = - 3\overrightarrow {O{G_2}} \) (vì \({G_2}\) là trọng tâm tam giác ABC)
\( \Rightarrow O,\,{G_2},\,D\) thẳng hàng và \(OD = 3O{G_2}\)
Xét ba mặt phẳng \(\left( {{G_1}{G_2}JM} \right),\,\left( {{G_2}MD} \right),\,\left( {SIJ} \right).\) Ta có:
\(\eqalign{
& \left( {{G_1}{G_2}JM} \right) \cap \left( {{G_2}MD} \right) = {G_2}M \cr
& \left( {{G_1}{G_2}JM} \right) \cap \left( {SIJ} \right) = {G_1}J \cr
& \left( {{G_2}MD} \right) \cap \left( {SIJ} \right) = SO. \cr} \)
Vậy \({G_2}M,\,{G_1}J\) và SO đồng quy. Theo kết quả câu b) thì \({G_2}M\) và \({G_1}J\) cắt nhau tại G. Vậy điểm G nằm trên SO.
Kẻ MM’ song song với SO và cắt \({G_2}D\) tại M’, ta có:
\(OM' = M'D = {1 \over 2}OD = {3 \over 2}O{G_2}\)
và \({{OG} \over {MM'}} = {{O{G_2}} \over {{G_2}M'}} = {{O{G_2}} \over {{5 \over 2}O{G_2}}} = {2 \over 5}\)
\(\eqalign{
& \Rightarrow OG = {2 \over 5}MM' = {1 \over 5}SO \cr
& \Rightarrow GS = 4GO. \cr} \)
Chương 6. Hợp chất carbonyl (Aldehyde - Ketone - Carboxylic acid
Bài 7: Tiết 4: Cộng hòa liên bang Đức - Tập bản đồ Địa lí 11
SGK Toán 11 - Cánh Diều tập 2
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
SBT tiếng Anh 11 mới tập 1
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11