Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy các điểm \({A_1},{B_1},{C_1}\) lần lượt thuộc các cạnh bên AA’, BB’, CC’ sao cho \({{A{A_1}} \over {AA'}} = {{B'{B_1}} \over {BB'}} = {{C'{C_1}} \over {CC'}} = {3 \over 4}\). Trên các đoạn thẳng CA1 và A’B1 lần lượt lấy các điểm I, J sao cho IJ // B’C1. Tính tỉ số \({{IJ} \over {B'{C_1}}}\) .
Lời giải chi tiết
Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c \). Theo giả thiết ta có:
\(\overrightarrow {A{A_1}} = {3 \over 4}\overrightarrow a ,\overrightarrow {B'{B_1}} = - {3 \over 4}\overrightarrow a ,\overrightarrow {C'{C_1}} = - {3 \over 4}\overrightarrow a .\)
Ta có:
\(\eqalign{ & \overrightarrow {C{A_1}} = \overrightarrow {CA} + \overrightarrow {A{A_1}} \cr & = {3 \over 4}\overrightarrow a - \overrightarrow c ; \cr & \overrightarrow {A'{B_1}} = \overrightarrow {A'B'} + \overrightarrow {B'{B_1}} \cr & = - {3 \over 4}\overrightarrow a + \overrightarrow b ; \cr & \overrightarrow {B'{C_1}} = \overrightarrow {B'A'} + \overrightarrow {A'C'} + \overrightarrow {C'{C_1}} \cr & = - {3 \over 4}\overrightarrow a - \overrightarrow b + \overrightarrow c \cr} \)
Vì I thuộc CA1 nên \(\overrightarrow {CI} = t\overrightarrow {C{A_1}} = {3 \over 4}t\overrightarrow a - t\overrightarrow c .\)
Do J thuộc A’B1 nên \(\overrightarrow {A'J} = m\overrightarrow {A'{B_1}} = - {3 \over 4}m\overrightarrow a + m\overrightarrow b \) .
Mặt khác
\(\eqalign{ & \overrightarrow {IJ} = \overrightarrow {IC} + \overrightarrow {CA'} + \overrightarrow {A'J} \cr & = - {3 \over 4}t\overrightarrow a + t\overrightarrow c + \overrightarrow a - \overrightarrow c - {3 \over 4}m\overrightarrow a + m\overrightarrow b \cr & = \left( {1 - {3 \over 4}t - {3 \over 4}m} \right)\overrightarrow a + m\overrightarrow b + \left( {t - 1} \right)\overrightarrow c \cr} \)
Ta có:
\(\eqalign{ & IJ//B'{C_1} \Leftrightarrow \overrightarrow {IJ} = k\overrightarrow {B'{C_1}} \cr & \Leftrightarrow \left\{ \matrix{ 1 - {3 \over 4}t - {3 \over 4}m = - {3 \over 4}k \hfill \cr m = - k \hfill \cr t - 1 = k \hfill \cr} \right. \cr} \)
Suy ra
\(\eqalign{ & 1 - {3 \over 4}\left( {k + 1} \right) + {3 \over 4}k = - {3 \over 4}k \cr & \Leftrightarrow {1 \over 4} + {3 \over 4}k = 0 \Leftrightarrow k = - {1 \over 3} \cr & \Rightarrow t = {2 \over 3},m = {1 \over 3}. \cr} \)
Vậy điểm I thuộc A1C được xác định bởi \(\overrightarrow {CI} = {2 \over 3}\overrightarrow {C{A_1}} \) và J thuộc A’B1 được xác định \(\overrightarrow {A'J} = {1 \over 3}\overrightarrow {A'{B_1}} \).
Khi đó, ta có \({{IJ} \over {B'{C_1}}} = {1 \over 3}.\)
Bài 3. Một số vấn đề mang tính chất toàn cầu - Tập bản đồ Địa lí 11
Chuyên đề 1. Trường hấp dẫn
Chuyên đề 2. Một số bệnh dịch ở người và cách phòng, chống
Dương phụ hành - Cao Bá Quát
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11