Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho đường tròn (O) với dây cung PQ. Dựng hình vuông ABCD có hai đỉnh A, B nằm trên đường thẳng PQ và hai đỉnh C, D nằm trên đường tròn.
Lời giải chi tiết
Giả sử đã dựng được hình vuông ABCD thỏa mãn điều kiện của bài toán.
Gọi I là trung điểm của đoạn thẳng PQ thì OI là đường trung trực của PQ nên cũng là đường trung trực của DC và do đó cũng là đường trung trực của AB.
Từ đó suy ra, nếu dựng hình vuông PQMN thì có phép vị tự tâm I biến hình vuông PQMN thành hình vuông ABCD.
Cách dựng:
Dựng hình vuông PQMN.
Lấy giao điểm C và C’ của đường thẳng IM và đường tròn, lấy giao điểm D và D’ của IN và đường tròn (ta kí hiệu sao cho hai điểm C, D nằm về một phía đối với đường thẳng PQ).
Gọi các điểm B, A, B’, A’ lần lượt là hình chiếu của các điểm C, D, C’, D’ trên đường thẳng PQ.
Ta được các hình vuông ABCD và A’B’C’D’ thỏa mãn điều kiện của bài toán.
CHƯƠNG 4. SINH SẢN
Unit 2: Get well
Chương II. Sóng
Chủ đề 4: Kĩ thuật bắt bóng của thủ môn và chiến thuật phòng thủ
Chương 3. Sinh trưởng và phát triển ở sinh vật
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11