Câu 73 trang 64 Sách bài tập Hình học 11 nâng cao.

Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) lần lượt cắt các cạnh SA, SB, SC tại A’, B’, C’. Gọi O là giao điểm của AC và BD; I là giao điểm của A’C’ và SO.

a) Tìm giao điểm D’ của mp(P) với cạnh SD.

b) Chứng minh rằng \({{SA} \over {SA'}} + {{SC} \over {SC'}} = {{2SO} \over {SI}}\)

c) Chứng minh rằng \({{SA} \over {SA'}} + {{SC} \over {SC'}} = {{SB} \over {SB'}} + {{SD} \over {SD'}}.\)

Lời giải chi tiết

a) Trong mp(SAC) nối A’ với C’ cắt SO tại I. Trong mp(SBD) nối B’ với I cắt SD tại D’. Khi đó D’ chính là giao điểm của mp(P) với SD.

b) (h.126)

Trong mp(SAC), kẻ AE // A'C' cắt SO tại E; kẻ CF // A'C' cắt SO tại F. Ta có:

\({{SA} \over {SA'}} = {{SE} \over {SI}} = {{SO - OE} \over {SI}}\,\,\,\,(1)\)

\({{SC} \over {SC'}} = {{SF} \over {SI}} = {{SO + \,OF} \over {SI}}\,\,\,\,(2)\)

Do O là trung điểm của AC và AE // CF, nên OE = OF.

Vậy từ (1) và (2), suy ra \({{SA} \over {SA'}} + {{SC} \over {SC'}} = {{2SO} \over {SI}}\)   (3)

c) Chứng minh tương tự câu b), ta có:

\({{SB} \over {SB'}} + {{SD} \over {SD'}} = {{2SO} \over {SI}}\)   (4)

Từ (3) và (4), suy ra:

\({{SA} \over {SA'}} + {{SC} \over {SC'}} = {{SB} \over {SB'}} + {{SD} \over {SD'}}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved