Câu hỏi 2 trang 13 SGK Hình học 11

Đề bài

Cho hình bình hành \(ABCD\). Gọi \(O\) là giao điểm của hai đường chéo. Đường thẳng kẻ qua \(O\) vuông góc với \(AB,\) cắt \(AB\) ở \(E\) và cắt \(CD\) ở \(F.\) Hãy chỉ ra các cặp điểm trên hình vẽ đối xứng với nhau qua tâm \(O\).

Lời giải chi tiết

- Hình bình hành \(ABCD\) có \(O\) là giao điểm của hai đường chéo \(⇒ O\) là trung điểm mỗi đường nên \(A\) và \(C\) đối xứng nhau qua tâm \(O\).

\(B\) và \(D\) đối xứng nhau qua tâm \(O\)

- Xét hai tam giác vuông \(AEO\) và \(CFO\) có:

\(OA = OC\) (do \(O\) là trung điểm \(AC\))

\(∠(AOE) = ∠(COF)\) (hai góc đối đỉnh)

\(⇒ ΔAEO = ΔCFO\) (cạnh huyền – góc nhọn kề)

\(⇒ OE = OF \)(hai cạnh tương ứng)

Nên \(O\) là trung điểm \(EF\)

\(⇒ E\) và \(F\) đối xứng nhau qua tâm \(O\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved