Đề bài
Một vật rơi tự do theo phương thẳng đứng có phương trình \(s = {1 \over 2}gt^2\) (trong đó \(g ≈ 9,8 m/s^2\)). Hãy tính vận tốc tức thời \(v(t)\) tại các thời điểm \({t_o}\; = 4s;{\rm{ }}{t_1}\; = 4,1{\rm{ }}s\). Tính tỉ số \(Δv \over Δt\) trong khoảng \(Δt = t_1 - t_0.\)
Phương pháp giải - Xem chi tiết
- Vận tốc \(v (t)= \dfrac{S(t)}{t}\).
- Thay các giá trị \(t_0\) và \(t_1\) vào \(v(t)\).
- Tính \({{\Delta v} \over {\Delta t}} = {{v({t_1}) - v({t_0})} \over {{t_1} - {t_0}}} \)
Lời giải chi tiết
\(\eqalign{
& v(t) = {s \over t} = {{{1 \over 2}g{t^2}} \over t} = {1 \over 2}gt \cr
& \Rightarrow \left\{ \matrix{
v({t_0}) = {s \over {{t_0}}} = {{{1 \over 2}g{t_0}^2} \over {{t_0}}} = {1 \over 2}g{t_0} = {1 \over 2}.9,8.4 = 19,6\,(m/s) \hfill \cr
v({t_1}) = {s \over {{t_1}}} = {{{1 \over 2}g{t_1}^2} \over {{t_1}}} = {1 \over 2}g{t_1} = {1 \over 2}.9,8.4,1 = 20,09\,(m/s) \hfill \cr} \right. \cr
& {{\Delta v} \over {\Delta t}} = {{v({t_1}) - v({t_0})} \over {{t_1} - {t_0}}} = {{20,09 - 19,6} \over {4,1 - 4}} = 4,9 \cr} \)
Chủ đề 6. Động cơ đốt trong
Chương II. Công nghệ giống vật nuôi
Chuyên đề 2. Truyền thông tin bằng bằng sóng vô tuyến
Chuyên đề II. Làm quen với một vài yếu tố của lí thuyết đồ thị
Unit 8: Health and Life expectancy
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11