PHẦN GIẢI TÍCH - TOÁN 12

Câu hỏi 2 trang 33 SGK Giải tích 12

Đề bài

Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y =  - {x^3}\; + {\rm{ }}3{x^2}\; - {\rm{ }}4\)

Nêu nhận xét về đồ thị của hàm số này với đồ thị của hàm số khảo sát trong Ví dụ 1.

Phương pháp giải - Xem chi tiết

B1: Tìm TXĐ

B2: Bảng biến thiên

- Xét chiều biến thiên

  +Tính \(y'\).

  + Tìm các điểm mà tại đó hàm số không xác định và nghiệm của \(y'=0\).

  + Xét dấu đạo hàm suy ra chiều biến thiên

- Tìm cực trị

- Tính các giới hạn,tiệm cận (nếu có).

- Lập bảng biến thiên

B3: Vẽ đồ thị

Lời giải chi tiết

TXĐ: \(D = \mathbb R.\)

Sự biến thiên:

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = - \infty \cr
& \mathop {\lim }\limits_{x\to - \infty } y = + \infty \cr} \)

\(y’ = -3x^2 + 6x.\) Cho \(y’ = 0 ⇒ x = 0\) hoặc \(x = 2.\)

Bảng biến thiên

Hàm số đồng biến trên khoảng \((0,2)\)

Hàm số nghịch biến trên các khoảng \((-∞,0), (2,+ ∞).\)

Hàm số đạt cực đại bằng 0 tại \(x = 2.\)

Hàm số đạt cực tiểu bằng -4 tại \(x = 0.\)

Vẽ đồ thị hàm số

Nhận xét: hai đồ thị đối xứng nhau qua \(Oy.\)

Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved