PHẦN GIẢI TÍCH - TOÁN 12

Câu hỏi 2 trang 50 SGK Giải tích 12

 

Đề bài

Dựa vào đồ thị của các hàm số \(y = {x^3}\) và \(y = {x^4}\)(H.26, H.27), hãy biện luận theo b số nghiệm của các phương trình \( {x^3}=b\) và\( {x^4}=b\) .

Lời giải chi tiết

 

Ta có: Số nghiệm của phương trình \( {x^3}=b\)  là số giao điểm của hai đồ thị hàm số \(y = {x^3}\) và \(y = b\)

Dựa vào H26 ta thấy: với mọi b: đồ thị hàm số  \(y = {x^3}\) luôn cắt đường thẳng  \(y = b\) tại một điểm duy nhất do đó phương trình \( {x^3}=b\) có nghiệm duy nhất với mọi b.

Số nghiệm của phương trình \( {x^4}=b\) (1) là số giao điểm của hai đồ thị hàm số  \(y = b\) và  \(y = {x^4}\) . Dựa và hình 27 ta thấy:

+ Với \(b < 0\) hai đồ thị hàm số trên không giao nhau, vậy phương trình (1) vô nghiệm.

+ Với \(b = 0\), hai đồ thị hàm số tiếp xúc nhau tại \((0,0)\), vậy phương trình (1) có nghiệm duy nhất \(x = 0.\)

+ Với \(b > 0\), hai đồ thị hàm số cắt nhau tại hai điểm phân biết, vậy phương trình (1) có hai nghiệm phân biệt.

 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved