Câu hỏi 2 trang 65 SGK Hình học 11

Đề bài

Cho tứ diện \(SABC\). Hãy dựng mặt phẳng \((α)\) qua trung điểm \(I\) của đoạn \(SA\) và song song với mặt phẳng \((ABC)\).

Phương pháp giải - Xem chi tiết

Cách 1: Xác định mp \((\alpha)\):

Gọi các giao điểm của \((\alpha)\) với các cạnh \(SB, SC.\) Chỉ ra đặc điểm và xác định vị trí của các giao điểm ấy.

Cách 2: Lấy K, L là trung điểm của SB, SC. Chứng minh: \(\left( \alpha  \right) \equiv \left( {IKL} \right)\)

Lời giải chi tiết

Cách 1:

Gọi \(K, L\) lần lượt là giao của mp \((\alpha)\) với các cạnh \(SB, SC.\)

Ta có: \((\alpha) \, // \, (ABC)\)

\(\begin{array}{l}
\Rightarrow \left\{ \begin{array}{l}
IK\;//\;\left( {ABC} \right) \supset AB\\
IL\;//\;\left( {ABC} \right) \supset AC
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
IK\;//\;AB\\
IL\;//\;AC
\end{array} \right.
\end{array}\)

Mà \(I\) là trung điểm của \(SA.\)

\( \Rightarrow \left\{ \begin{array}{l}
K\text {là trung điểm cạnh SB}\\
I\;\text {là trung điểm cạnh SC} 
\end{array} \right.\)

Vậy mp \((\alpha)\) chính là mp \((IKL).\)

Cách 2:

Mặt phẳng \((α)\) là mặt phẳng đi qua 3 trung điểm \(I, K, L\) của \(SA, SB, SC\)

Thật vậy, gọi \( K , L\) lần lượt là trung điểm của \(SB, SC\)

Suy ra \(IK, KL\) lần lượt là đường trung bình trong tam giác \(SAB\) và \(SBC\)

\(IK//{\rm{ }}AB \in \left( {ABC} \right) \Rightarrow {\rm{ }}IK//\left( {ABC} \right)\)

\(KL//{\rm{ }}BC \in \left( {ABC} \right) \Rightarrow {\rm{ }}KL//\left( {ABC} \right)\)

\(IK\) và \(KL\) cắt nhau và cùng song song với mp \((ABC)\)

⇒ Mặt phẳng chứa \(IK\) và \(KL\) song song với mp \((ABC)\)

Hay \((α) // (ABC)\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved