Giải các phương trình sau:
LG a
\(\sin x = \dfrac{1}{3}\)
Lời giải chi tiết:
\(\sin x = \dfrac{1}{3} \Leftrightarrow \left[ \begin{array}{l}
x = \arcsin \dfrac{1}{3} + k2\pi \\
x = \pi - \arcsin \dfrac{1}{3} + k2\pi
\end{array} \right. (k∈ Z) \)
Vậy phương trình \(sinx ={1 \over 3}\) có các nghiệm là:
\(\left[ \begin{array}{l}
x = \arcsin \dfrac{1}{3} + k2\pi \\
x = \pi - \arcsin \dfrac{1}{3} + k2\pi
\end{array} \right. (k∈ Z) \)
LG b
\(\eqalign{ \sin (x + {45^0}) = {{ - \sqrt 2 } \over 2} \cr} \)
Lời giải chi tiết:
\(\begin{array}{l}
\sin \left( {x + {{45}^0}} \right) = - \dfrac{{\sqrt 2 }}{2}\\
\Leftrightarrow \sin \left( {x + {{45}^0}} \right) = \sin \left( { - {{45}^0}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x + {45^0} = - {45^0} + k{360^0}\\
x + {45^0} = {180^0} - \left( { - {{45}^0}} \right) + k{360^0}
\end{array} \right. (k∈ Z) \\
\Leftrightarrow \left[ \begin{array}{l}
x = - {90^0} + k{360^0}\\
x = {180^0} + k{360^0}
\end{array} \right. (k∈ Z)
\end{array}\)
Vậy phương trình có nghiệm \(\left[ \begin{array}{l}
x = - {90^0} + k{360^0} \\
x = {180^0} + k{360^0}
\end{array} \right. (k∈ Z) \)
SOẠN VĂN 11 TẬP 1
Chương 4: Hydrocarbon
Chương 1. Sự điện li
Bài 9: Tiết 1: Tự nhiên, dân cư và tình hình phát triển kinh tế Nhật Bản - Tập bản đồ Địa lí 11
Phần một: Giáo dục kinh tế
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11