PHẦN GIẢI TÍCH - TOÁN 12

Câu hỏi 3 trang 23 SGK Giải tích 12

Đề bài

Lập bảng biến thiên của hàm số \(\displaystyle f(x) = -{{ 1} \over {1 + {x^2}}}\)

Từ đó suy ra giá trị nhỏ nhất của \(f(x)\) trên tập xác định.

Phương pháp giải - Xem chi tiết

+) Tìm tập xác định của hàm số.

+) Tính đạo hàm của hàm số. Tìm các điểm \(x_i \,(i =1,2,3,…,n)\) mà tại đó đạo hàm bằng 0 hoặc không xác định

+) Sắp xếp các điểm \(x_i\) theo thứ tự tăng dần và lập bảng biến thiên

+) Dựa vào bảng biến thiên, khoảng đồng biến và nghịch biến của hàm số trên tập xác định của nó để suy ra GTNN

Lời giải chi tiết

1. TXĐ: \(D = \mathbb R.\)

2. \(y' =\dfrac {2x} {{(1 + {x^2})}^2}\)

Cho \(y’ = 0\) thì \(x = 0\).

3. Bảng biến thiên

Vậy giá trị nhỏ nhất của hàm số đã cho là \(– 1\) tại \(x = 0\).

Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved