Đề bài
Tìm đạo hàm của hàm số: \(y = \ln (x + \sqrt {(1 + {x^2})} )\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức đạo hàm \(\left( {\ln u} \right)' = \dfrac{{u'}}{u}\)
Lời giải chi tiết
\(\eqalign{
& y' = {\rm{[}}\ln (x + \sqrt {1 + {x^2}} ){\rm{]'}} \cr
& {\rm{ = }}{{(x + \sqrt {1 + {x^2}} )'} \over {x + \sqrt {1 + {x^2}} }} \cr} \)
\( = \dfrac{{1 + \dfrac{{\left( {1 + {x^2}} \right)'}}{{2\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \) \(= \dfrac{{1 + \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }}\) \( = \dfrac{{1 + \dfrac{x}{{\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \)
\(= \dfrac{{\dfrac{{\sqrt {1 + {x^2}} + x}}{{\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \) \(= \dfrac{1}{{\sqrt {1 + {x^2}} }}\)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Sinh học lớp 12
CHƯƠNG 6. BẰNG CHỨNG VÀ CƠ CHẾ TIẾN HÓA
Unit 9. Choosing a Career
Chương 1. Dao động cơ
Tải 10 đề thi giữa kì 1 Hóa 12