Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho tam giác \(ABC\) có \(A’, B’, C’\) theo thứ tự là trung điểm của các cạnh \(BC, CA, AB.\) Tìm một phép vị tự biến tam giác \(ABC\) thành tam giác \(A’B’C’\) (h.1.56).
Phương pháp giải - Xem chi tiết
Phép vị tự biến \(\Delta ABC\) thành \(\Delta A'B'C'\) tức là biến các đỉnh \(A,B,C\) tương ứng thành \(A', B', C'\) .
Do đó cần tìm các phép vị tự cùng tâm, cùng tỉ số biến đỉnh cũ thành đỉnh mới.
Lời giải chi tiết
Theo đề bài ta có: \(AA', BB', CC'\) là các đường trung tuyến của \(ΔABC\)
\(⇒ G\) là trọng tâm \(\Delta ABC \)
Suy ra
\( \left\{ \matrix{
\overrightarrow {GA'} = - {1 \over 2}\overrightarrow {GA} \hfill \cr
\overrightarrow {GB'} = - {1 \over 2}\overrightarrow {GB} \hfill \cr
\overrightarrow {GC'} = - {1 \over 2}\overrightarrow {GC} \hfill \cr} \right.\)
Vậy phép vị tự tâm \(G\), tỉ số \(k = - {1 \over 2}\) biến mỗi điểm \(A, B, C\) thành \(A', B', C'\) nên biến tam giác \(ABC\) thành tam giác \(A'B'C'.\)
Bài 11: Tiết 2: Kinh tế khu vực Đông Nam Á - Tập bản đồ Địa lí 11
Bài 2. Xu hướng toàn cầu hóa, khu vực hóa kinh tế - Tập bản đồ Địa lí 11
Review 4 (Units 9-10)
CHƯƠNG III. DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
Chủ đề 1: Vai trò, tác dụng của môn bóng chuyền đối với sự phát triển thể chất - một số điều luật thi đấu môn bóng chuyền
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11