Đề bài
Cho \({b_1} = {2^3};\,\,{b_2} = {2^5}\)
Tính \({\log _2}{b_1}\, + {\log _2}{b_2};\,\,{\log _2}{b_1}{b_2}\) và so sánh các kết quả.
Phương pháp giải - Xem chi tiết
Sử dụng công thức \({\log _a}{a^n} = n\) và \({\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\)
Lời giải chi tiết
\(\eqalign{
& {\log _2}{b_1}\, + {\log _2}{b_2} = {\log _2}{2^3} + {\log _2}{2^5} = 3 + 5 = 8 \cr
& {\log _2}{b_1}{b_2} = {\log _2}({2^3}{.2^5}) = \log ({2^{3 + 5}}) = {\log _2}{2^8} = 8 \cr} \)
Vậy \({\log _2}{b_1}\, + {\log _2}{b_2} = {\log _2}{b_1}{b_2}\)
CHƯƠNG 5. DI TRUYỀN HỌC NGƯỜI
PHẦN MỘT. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NĂM 2000
CHƯƠNG V. DÒNG ĐIỆN XOAY CHIỀU
Bài 20. Chuyển dịch cơ cấu kinh tế
Chương 7. Hạt nhân nguyên tử