Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho hình hộp \(ABCD.EFGH\). Gọi \(I\) và \(K \) lần lượt là trung điểm của các cạnh \(AB\) và \(BC\). Chứng minh rằng các đường thẳng \(IK\) và \(ED\) song song với mặt phẳng \((AFC)\). Từ đó suy ra ba vecto \(\overrightarrow {{\rm{AF}}} ;\,\overrightarrow {IK} ;\,\overrightarrow {ED} \) đồng phẳng.
Phương pháp giải - Xem chi tiết
Ba véc tơ được gọi là đồng phẳng nếu giá của chúng cùng song song với một mặt phẳng.
Lời giải chi tiết
\(I\) và \(K\) lần lượt là trung điểm của các cạnh \(AB\) và \(BC\) \(⇒ IK\) là đường trung bình của \(∆ABC\) nên \(IK//AC \subset \left( {ACF} \right) \Rightarrow IK//\left( {ACF} \right)\)
Hình hộp \(ABCD.EFGH\) nên \((ADHE) // (BCGF)\)
\(⇒ FC // ED\) (là đường chéo trong các hình bình hành \(BCGF\) và \(ADHE)\)
Nên \(ED // (AFC)\).
Ngoài ra \(AF \subset \left( {ACF} \right)\)
⇒ ba vecto \(\overrightarrow {{\rm{AF}}} ;\overrightarrow {IK} ;\overrightarrow {ED} \) đồng phẳng (vì giá của chúng song song với một mặt phẳng, có thể chọn một mặt phẳng bất kì song song với \((ACF)\))
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Địa lí lớp 11
SOẠN VĂN 11 TẬP 2
PHẦN BA. LỊCH SỬ VIỆT NAM (1858 - 1918)
Unit 2: Get well
Unit 7: Healthy lifestyle
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11