Đề bài
Tính khoảng cách giữa hai mặt phẳng \((α)\) và \((β)\) cho bởi các phương trình sau đây: \(\left( \alpha \right):{\rm{ }}x-2 = 0;{\rm{ }}\left( \beta \right):x--8 = 0\)
Phương pháp giải - Xem chi tiết
- Chứng minh hai mặt phẳng song song.
- Tính khoảng cách giữa hai mặt phẳng \(d\left( {\left( \alpha \right),\left( \beta \right)} \right) = d\left( {M,\left( \beta \right)} \right) \) ở đó tọa điểm \(M\) chọn trước thuộc \((\alpha )\).
- Công thức khoảng cách: \(d\left( {{M_0},\left( P \right)} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)
Lời giải chi tiết
Ta thấy: \(\left( \alpha \right)\) và \(\left( \beta \right)\) cùng có VTPT \(\overrightarrow n = \left( {1;0;0} \right)\).
Dễ thấy điểm \(M\left( {2;0;0} \right) \in \left( \alpha \right)\) nhưng \(M\left( {2;0;0} \right) \notin \left( \beta \right)\) nên \(\left( \alpha \right)//\left( \beta \right)\).
Từ đó \(d\left( {\left( \alpha \right),\left( \beta \right)} \right) = d\left( {M,\left( \beta \right)} \right) = \dfrac{{\left| {2 - 8} \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = 6\)
Vậy khoảng cách giữa hai mặt phẳng bằng \(6\).
Chương 8. Nhận biết một số chất vô cơ
CHƯƠNG II. HỆ QUẢN TRỊ CƠ SỞ DỮ LIỆU MICROSOFT ACCESS
Đề thi khảo sát chất lượng đầu năm
CHƯƠNG 7. CROM-SẮT-ĐỒNG
CHƯƠNG 3. DI TRUYỀN HỌC QUẦN THỂ