PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 1 - Bài 2 - Chương 2 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3

Đề bài

Đề bài

Bài 1. Tìm m để mỗi hàm số sau là hàm bậc nhất:

a. \(y = \sqrt {m - 3} \left( {x - 1} \right)\)

b. \(y = {{1 - m} \over {4 - m}}x + {1 \over 4}\)

Bài 2. Hàm số nào sau đây là hàm số đồng biến, nghịch biến?

a. \(y = \left( {2 - \sqrt 3 } \right)x + 1\) 

b. \(y = {1 \over {\sqrt 2  - 2}}x + {1 \over {\sqrt 2 }}\)

Bài 3. Tìm m để mỗi hàm số sau đồng biến trên \(\mathbb R\):

a. \(y = mx + 1\)

b. \(y = \sqrt {3 - m} x + \sqrt 2 \)

LG bài 1

LG bài 1

Phương pháp giải:

Hàm số \(y = ax + b\) là hàm số bậc nhất khi \(a  ≠ 0.\)

Lời giải chi tiết:

a. Hàm số \(y = \sqrt {m - 3} \left( {x - 1} \right)\)\( = \sqrt {m - 3}.x - \sqrt {m - 3}\) là hàm số bậc nhất khi \(\left\{ {\matrix{   {m - 3 \ge 0}  \cr   {m - 3 \ne 0}  \cr  } } \right. \Leftrightarrow m > 3\) 

b. Hàm số \(y = {{1 - m} \over {4 - m}}x + {1 \over 4}\) là hàm số bậc nhất khi : \({{1 - m} \over {4 - m}} \ne 0 \Leftrightarrow \left\{ {\matrix{   {1 - m \ne 0}  \cr   {4 - m \ne 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {m \ne 1}  \cr   {m \ne 4}  \cr  } } \right.\)

LG bài 2

LG bài 2

Phương pháp giải:

Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:

a) Đồng biến trên R khi \(a > 0\) 

b) Nghịch biến trên R khi \(a < 0.\) 

Lời giải chi tiết:

a. Ta có: \(a = 2 - \sqrt 3  > 0.\) Vậy hàm số đã cho đồng biến trên \(\mathbb R\). 

b. Ta có: \(a = {1 \over {\sqrt 2  - 2}} < 0.\) Vậy hàm số đã cho nghịch biến trên \(\mathbb R\).

LG bài 3

LG bài 3

Phương pháp giải:

Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:

a) Đồng biến trên R khi \(a > 0\) 

b) Nghịch biến trên R khi \(a < 0.\) 

Lời giải chi tiết:

a. Hàm số đồng biến \(⇔ m > 0\) 

b. Hàm số đồng biến \(⇔\) \(\sqrt {3 - m}  > 0 \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved