PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 1 - Bài 6 - Chương 2 - Hình học 8

Đề bài

Cho tứ giác ABCD. Gọi M là trung điểm của AB, N là trung điểm của CD. Chứng minh \({S_{BNDM}} = \dfrac{1}{2}{S_{ABCD}}.\)

Phương pháp giải - Xem chi tiết

Phân chia tứ giác ABCD thành các tam giác 

Sử dụng: Diện tích tam giác bằng nửa tích đường cao với cạnh đáy tương ứng

Lời giải chi tiết

 Nối BD, gọi diện tích các tam giác (theo hình vẽ) là \({S_1},{S_2},{S_3},{S_4}.\) Ta có BN là trung tuyến của \(\Delta BCD\) nên \({S_1} = {S_2}\) (chung đường cao, đáy bằng nhau)

Tương tự \({S_3} = {S_4}\)

\( \Rightarrow {S_2} + {S_3} = {S_1} + {S_4} = {1 \over 2}{S_{ABCD}}\)

Hay \({S_{BNDM}} = {1 \over 2}{S_{ABCD.}}\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved