PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 1 - Bài 7 - Chương 1 - Hình học 8

Đề bài

Cho tam giác ABC, hai trung tuyến BM, CN cắt nhau tại G. Gọi E, F lần lượt là trung điểm của GB và GC.

a) Chứng minh tứ giác MNEF là hình bình hành. 

b) Lấy I, J thuộc tia đối của MG và NG sao cho MI = MG và NI = NG. Chứng minh tứ giác BCIJ là hình bình hành.

Phương pháp giải - Xem chi tiết

Sử dụng: 

+) Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

+) Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.

Lời giải chi tiết

 

 

a) Ta có MN là đường trung bình của \(\Delta ABC\)

\( \Rightarrow MN//BC\) và \(MN = \dfrac{1}{ 2}BC.\)

Lại có EF là đường trung bình của \(\Delta BGC\) nên \({\rm{EF}}// BC\) và \({\rm{EF}} = \dfrac{1}{ 2}BC.\)

Do đó \(MN// {\rm{EF}}\) và \(MN = EF.\)

Vậy MNEF là hình bình hanh (hai cạnh đối vừa song song vừa bằng nhau).

b) Tam giác ABC có hai trung tuyến BM, CN cắt nhau tại G

Nên G là trọng tâm của \(\Delta ABC\), do đó \(GN = \dfrac{1 }{ 2}GC\)

Mà GN = JN (gt) \( \Rightarrow GJ = GC.\)

Tương tự ta có \(GM = \dfrac{1 }{ 2}GB\) (do G là trọng tâm tam giác ABC) mà \(GM=MI\) (gt)

Suy ra GI = GB.

Vậy tứ giác BJIC là hình bình hành (hai đường chéo CJ và BI cắt nhau tại trung điểm mỗi đường).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved