Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho đường tròn (O; R). Một điểm A ở ngoài đường tròn sao cho OA = 2R. Vẽ các tiếp tuyến AB và AC đến (O) ( A , B là hai tiếp điểm).
a) Tính số đo các \(\widehat {AOB}\) và \(\widehat {BOC}\).
b) Tính số đo cung nhỏ và cung lớn BC.
Phương pháp giải - Xem chi tiết
a.
-Chứng minh tam giác AOB là nửa tam giác đều, từ đó suy ra số đo góc AOB
-Mà \(\widehat {BOC} = 2\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) ta tính được góc BOC
b.Sử dụng: Số đo góc ở tâm bằng số đo cung bị chắn
Lời giải chi tiết
a) AB là tiếp tuyến của (O; R) nên AB \(\bot\) OB.
∆ABO vuông tại B có : OA = 2R, OB = R (gt) nên là nửa tam giác đều \(\Rightarrow \widehat {AOB} = 60^\circ \).
Do đó \(\widehat {BOC} = 2\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau)
hay \(\widehat {BOC} = 120^\circ \).
b) Ta có: \(\widehat {BOC} = 120^\circ \) (cmt)
\(\Rightarrow sd\overparen{BnC}=120^o\)
\(\Rightarrow sd\overparen{BmC}=360^o-120^o=240^o\)