PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 2 - Bài 6 - Chương 2 - Hình học 8

Đề bài

Cho tam giác ABC, lấy P, Q lần lượt là trung điểm cạnh AB và AC. Kẻ BE, CF cùng vuông góc với PQ.

a)Chứng minh tứ giác BCFE là hình chữ nhật. 

b)Chứng minh \({S_{BCFE}} = {S_{ABC}}.\)

Phương pháp giải - Xem chi tiết

Sử dụng: 

Tứ giác có cặp cạnh đối song song và bằng nhau là hình bình hành

Hình bình hành có 1 góc vuông là hình chữ nhật 

Các tam giác bằng nhau có diện tích bằng nhau
 

Lời giải chi tiết

 

a) Ta có PQ là đường trung bình của \(\Delta ABC\) nên \(PQ// BC.\)

Lại có \(BE// CF\left( { \bot PQ} \right)\) nên BCFE là hình bình hành có một góc vuông.

Do đó BCFE là hình chữ nhật. 

b) Kẻ \(AH \bot PQ.\) Ta có \(\Delta AHP = \Delta BEP\) (ch-gn)

Tương tự \(\Delta AHQ = \Delta CFQ\) (ch-gn)

Gọi \({S_1},{S_2},{S_3},{S_4}\) lần lượt là diện tích các tam giác AHP, BEP, AHQ và CFQ.

Ta có: \({S_1} = {S_2}\) và \({S_3} = {S_4}\)

Mà \({S_{BCEF}} = {S_2} + {S_{BPQC}} + {S_4}\) và \({S_{ABC}} = {S_1} + {S_{BPQC}} + {S_3}.\)

Do đó: \({S_{BCEF}} = {S_{ABC}}\). 

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved