PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 3 - Bài 10 - Chương 1 - Đại số 8

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3

Đề bài

Đề bài

Bài 1. Làm tính chia:

a) \({\left( { - {x^2}{y^5}} \right)^3}:{\left( {2{x^2}y} \right)^2}\)

b) \( - {1 \over 3}{m^3}{n^2}{p^2}:\left( {{2 \over 3}{m^2}{n^2}p} \right)\)

c) \({\left( { - 4{a^3}{b^2}} \right)^2}:{\left( {8{a^2}b} \right)^2}\)

Bài 2. Tính giá trị của biểu thức: \(- {3 \over 4}{a^5}{b^3}{c^2}:\left( { - {3 \over 2}{a^2}{b^2}c} \right),\) tại \(a =  - 2;b = 3;c = {1 \over 2}.\)

Bài 3. Tìm số tự nhiên n để phép chia sau là phép chia hết: \(4{x^n}{y^{n + 1}}:3{x^4}{y^6}.\)

LG bài 1

LG bài 1

Phương pháp giải:

Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau:

- Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\)

- Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của cùng biến đó trong \(B.\)

- Nhân các kết quả vừa tìm được với nhau.

Lời giải chi tiết:

a) \({\left( { - {x^2}{y^5}} \right)^3}:{\left( {2{x^2}y} \right)^2}\)

\(= \left( { - {x^6}{y^{15}}} \right):\left( {4{x^4}{y^2}} \right)\)

\( =  - \frac{1}{4}.\left( {{x^6}:{x^4}} \right).\left( {{y^{15}}:{y^2}} \right)\)

\(=  - {1 \over 4}{x^2}{y^{13}}.\)

b) \( - {1 \over 3}{m^3}{n^2}{p^2}:\left( {{2 \over 3}{m^2}{n^2}p} \right) \)

\( = \left( { - \frac{1}{3}:\frac{2}{3}} \right).\left( {{m^3}:{m^2}} \right)\)\(.\left( {{n^2}:{n^2}} \right).\left( {{p^2}:p} \right)\)

\(=  - {1 \over 2}mp.\)

c) \({\left( { - 4{a^3}{b^2}} \right)^2}:{\left( {8{a^2}b} \right)^2}\)

\(= \left( {16{a^6}{b^4}} \right):\left( {64{a^4}{b^2}} \right) \)

\( = \frac{{16}}{{64}}.\left( {{a^6}:{a^4}} \right).\left( {{b^4}:{b^2}} \right)\)

\( = {1 \over 4}{a^2}{b^2}.\)

LG bài 2

LG bài 2

Phương pháp giải:

Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau:

- Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\)

- Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của cùng biến đó trong \(B.\)

- Nhân các kết quả vừa tìm được với nhau.

Lời giải chi tiết:

Ta có: 

\( - {3 \over 4}{a^5}{b^3}{c^2}:\left( { - {3 \over 2}{a^2}{b^2}c} \right) \)

\( = \left[ { - \frac{3}{4}:\left( { - \frac{3}{2}} \right)} \right].\left( {{a^5}:{a^2}} \right).\left( {{b^3}:{b^2}} \right).\left( {{c^2}:c} \right)\)

\(= {1 \over 2}{a^3}bc.\)

Thay \(a =  - 2;b = 3;c = {1 \over 2},\) ta được: \({1 \over 2}.{\left( { - 2} \right)^2}.3.{1 \over 2} =  - 6\)

LG bài 3

LG bài 3

Phương pháp giải:

Đơn thức A chia hết cho đơn thức B (có hệ số khác 0) nếu biến của B cũng là biến của A và số mũ của các biến trong B nhỏ hơn hoặc bằng các biến tương ứng trong A.

Lời giải chi tiết:

Để phép chia là phép chia hết thì: 

\(\left\{ \matrix{  n \ge 4 \hfill \cr  n + 1 \ge 6 \hfill \cr n \in N \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  n \ge 4 \hfill \cr  n \ge 5 \hfill \cr  n \in N \hfill \cr}  \right.\)

\(\Rightarrow \left\{ \matrix{ n \ge 5 \hfill \cr  n \in N \hfill \cr}  \right.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved