Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho tam giác đều ngoại tiếp đường tròn (I; r = 2cm).
a) Tính cạnh của tam giác đều.
b) Tính bán kính của đường tròn ngoại tiếp tam giác đó.
Phương pháp giải - Xem chi tiết
Sử dụng:
+Tính chất hai tiếp tuyến cắt nhau
+Tỉ số lượng giác của góc nhọn
Lời giải chi tiết
a)
Ta có BM, BP là hai tiếp tuyến với đường tròn (I; r) nên BI là phân giác của \(\widehat {ABC}\)
\( \Rightarrow \widehat {IBP} = 30^\circ \).
Xét tam giác vuông IBP, ta có :
\(BP = IP.\cot 30^\circ = r\sqrt 3 \)
Do đó : \(BC = 2r\sqrt 3 = 4\sqrt 3 \) cm
Vậy cạnh của tam giác đều ngoại tiếp đường tròn (I; r = 2cm) là \(4\sqrt 3 \) cm.
b) ∆IBP vuông tại P có \(\widehat {IBP} = 30^\circ \) nên \(BI = 2IP = 2r = 2.2 = 4\) (cm)
Tương tự ta tính được \(AI = CI = 4\) (cm)
\( \Rightarrow AI = BI = CI = 4\) (cm) nên I chính là tâm của đường tròn ngoại tiếp ∆ABC.
Do đó bán kính của đường tròn ngoại tiếp ∆ABC là 4 (cm).
Đề thi vào 10 môn Văn Quảng Trị
Các bài tập làm văn
Đề thi vào 10 môn Toán Vĩnh Phúc
Bài 20
Đề thi vào 10 môn Văn Gia Lai