PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 3 - Bài 8 - Chương 3 - Hình học 9

Đề bài

Cho tam giác đều ngoại tiếp đường tròn (I; r = 2cm).

a)  Tính cạnh của tam giác đều.

b)  Tính bán kính của đường tròn ngoại tiếp tam giác đó.

Phương pháp giải - Xem chi tiết

Sử dụng:

+Tính chất hai tiếp tuyến cắt nhau

+Tỉ số lượng giác của góc nhọn

Lời giải chi tiết

 

a) 

Ta có BM, BP là hai tiếp tuyến với đường tròn (I; r) nên BI là phân giác của \(\widehat {ABC}\)

\( \Rightarrow \widehat {IBP} = 30^\circ \).

Xét tam giác vuông IBP, ta có :

\(BP = IP.\cot 30^\circ  = r\sqrt 3 \)

Do đó : \(BC = 2r\sqrt 3  = 4\sqrt 3 \) cm

Vậy cạnh của tam giác đều ngoại tiếp đường tròn (I; r = 2cm) là \(4\sqrt 3 \) cm.

b)  ∆IBP vuông tại P có \(\widehat {IBP} = 30^\circ \) nên \(BI = 2IP = 2r = 2.2 = 4\) (cm)

Tương tự ta tính được \(AI = CI = 4\) (cm)

\( \Rightarrow  AI = BI = CI = 4\)  (cm) nên I chính là tâm của đường tròn ngoại tiếp ∆ABC.

Do đó bán kính của đường tròn ngoại tiếp ∆ABC là 4 (cm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved