PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 1 - Hình học 8.

Đề bài

Cho hình vuông ABCD cạnh bằng a có M và N là hai điểm di động lần lượt trên cạnh AB và AD sao cho \(\widehat {MCN} = {45^0}\). Vẽ tia Cx vuông góc với CN,Cx cắt đường thẳng AB tại E.

Chứng minh E là điểm đối xứng của N qua CM.

Phương pháp giải - Xem chi tiết

+ Ta chứng minh \(CE = CN\) suy ra  tam giác \(CEN\) cân tại \(C\) .

+ Ta chứng minh CM là tia phân giác đồng thời là trung trực của NE nên E đối xứng với N qua CM.

Lời giải chi tiết

 

Ta có \(CN \bot CE\,\left( {gt} \right)\) mà \(\widehat {MCN} = {45^0}\) nên \(\widehat {MCE} = {45^0}\) hay \(\widehat {{C_2}} + \widehat {{C_3}} = {45^0}\). Mà \(\widehat {{C_1}} + \widehat {{C_3}} = {45^0}\) (vì \(\widehat {MCN} = {45^0}\)) nên \(\widehat {{C_1}} = \widehat {{C_2}}\). 

Xét tam giác CDN và tam giác CBE có:

BC = DC  (do ABCD là hình vuông); \(\widehat D = \widehat B = {90^0}\) ; \(\widehat {{C_1}} = \widehat {{C_2}}\) (cmt)

Suy ra \(\Delta CDN = \Delta CBE(g.c.g)\) .Suy ra \(CN = CE\)

Xét tam giác \(CEN\) có \(CN = CE\) (cmt) nên tam giác \(CEN\) là tam giác cân tại \(C.\)

Suy ra phân giác \(CM\) đồng thời là đường trung trực của \(NE .\) 

Vậy E là điểm đối xứng của N qua CM.

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved