PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 4 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2

Đề bài

Đề bài

Bài 1: Lập phương trình bậc hai có hai nghiệm là \(- 1\) và \(2.\)

Bài 2: Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\). Tìm m để phương trình có hai nghiệm khác dấu và bằng nhau về giá trị tuyệt đối.

LG bài 1

LG bài 1

Phương pháp giải:

Sử dụng định lý Vi-ét đảo

Nếu u,v là 2 số có tổng u+v=S và tích u.v=P thì u,v là hai nghiệm của phương trình bậc hai \({X^2} - SX + P = 0({S^2} - 4P \ge 0)\)

Lời giải chi tiết:

Bài 1: Ta có: \((− 1) + 2 = 1 = S;    (− 1).2 = − 2 = P\)

Vậy \(– 1\) và \(2\) là nghiệm phương trình bậc hai : \({x^2} - x - 2 = 0.\)

LG bài 2

LG bài 2

Phương pháp giải:

Phương trình có hai nghiệm khác dấu \( \Leftrightarrow  P<0\)

Gọi \({x_1},{\rm{ }}{x_2}\) là nghiệm của phương trình. Ta có : \(\left| {{x_1}} \right| = \left| {{x_2}}\right| \)

Biến đổi suy ra tổng 2 nghiệm từ đó tìm được m

Lời giải chi tiết:

Bài 2: Phương trình có hai nghiệm khác dấu \( \Leftrightarrow  P = m – 3 < 0 \Leftrightarrow  m < 3\)

Gọi \({x_1},{\rm{ }}{x_2}\) là nghiệm của phương trình. Ta có :

\(\left| {{x_1}} \right| = \left| {{x_2}} \right| \Leftrightarrow x_1^2 = x_2^2\)

\(\Leftrightarrow \left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2}} \right) = 0\)

\( \Leftrightarrow \left[ \matrix{  {x_1} - {x_2} = 0 \hfill \cr  {x_1} + {x_2} = 0 \hfill \cr}  \right. \Leftrightarrow {x_1} + {x_2} = 0\)

(Vì \({x_1}{\rm{ +  }}{x_2} = 0 \Leftrightarrow 2\left( {m - 1} \right) = 0 \Leftrightarrow m = 1\) thỏa mãn điều kiện \(m< 3\)).

Vậy \(m=1\) thỏa mãn yêu cầu bài toán.

 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved