Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Đề bài
Bài 1: Cho hai phương trình : \(x + y = 2\) và \(x - 2y = - 1.\) Tìm một cặp số ( x; y) là nghiệm chung của hai phương trình.
Bài 2: Xác định hệ số góc và tung độ gốc của đường thẳng biểu diễn tập nghiệm của phương trình
\(3x -2y = 6.\)
Bài 3: Tìm m để cặp số \(( 1; 2)\) là nghiệm của phương trình :
\(2x + my = m + 1.\) Viết công thức nghiệm tổng quát của phương trình với m vừa tìm được.
LG bài 1
LG bài 1
Phương pháp giải:
Nghiệm chung \(( x ; y)\) của hai phương trình chính là tọa độ giao điểm ( nếu có) của hai đường thẳng \(x + y = 2\) và \(x – 2y = − 1.\)
Viết phương trình tung độ giao điểm của hai đường thẳng, giải ra ta tìm được x từ đó suy ra y
Lời giải chi tiết:
Bài 1: Nghiệm chung \(( x ; y)\) của hai phương trình chính là tọa độ giao điểm ( nếu có) của hai đường thẳng \(x + y = 2\) và \(x – 2y = − 1.\)
Viết lại : \(x = 2 – y\) và \(x = 2y – 1.\)
Phương trình tung độ giao điểm của hai đường thẳng :
\( 2 – y = 2y – 1 \Leftrightarrow y = 1\)
Từ đó tìm được \(x = 1.\)
Vậy nghiệm chung là cặp số \(( 1; 1).\)
LG bài 2
LG bài 2
Phương pháp giải:
Viết lại phương trình về dạng y=ax+b từ đó ta có:
+Hệ số góc là a
+Tung độ gốc là b
Lời giải chi tiết:
Bài 2: Viết lại : \(y = {3 \over 2}x - 3\)
Ta có hệ góc a = \({3 \over 2}\); tung độ gốc \(b = −3.\)
LG bài 3
LG bài 3
Phương pháp giải:
Thay tọa độ điểm (1;2) vào phương trình ban đầu ta tìm được m
Thay m vào phương trình ban đầu rồi rút y theo x ta được công thức nghiệm tổng quát
Lời giải chi tiết:
Bài 3: Cặp số \(( 1; 2)\) là nghiệm của phương trình, nên ta có :
\( 2.1 + 2m = m + 1 \Leftrightarrow m = −1.\)
Vậy, ta có : \(2x - y = 0 \Leftrightarrow y = 2x\)
Công thức nghiệm tổng quát : \((x;2x)\)
Unit 8: Tourism
PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2
Mĩ thuật
CHƯƠNG I. CĂN BẬC HAI - CĂN BẬC BA
Đề thi vào 10 môn Toán Hưng Yên