PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 2 - Đại số 8

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
LG bài 4
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
LG bài 4

Đề bài

Đề bài

Giả sử tất cả các phân thức trong đề bài đều có nghĩa.

Bài 1. Tìm m, biết : \({{\left( {{x^3} + 8} \right):m} \over {\left( {{x^2} - 4} \right):m}} = {{{x^2} - 2x + 4} \over {x - 2}}.\)  

Bài 2. Tìm P, biết : \({{{x^2} + 2x + 1} \over {2{x^2} - 2}} = {{x + 1} \over P}.\)  

Bài 3. Đưa các phân thức sau về cùng tử thức : \({{{x^3} - 1} \over {{x^2} + 1}}\) và \({{x - 1} \over {x + 1}}.\)  

Bài 4. Đưa các phân thức sau về cùng mẫu thức : \({1 \over {{a^2} - 4}};{1 \over {{a^3} - 8}};{1 \over {a + 2}}.\)  

LG bài 1

LG bài 1

Phương pháp giải:

Rút gọn vế trái rồi suy ra m

Lời giải chi tiết:

Ta có :

\({{\left( {{x^3} + 8} \right):m} \over {\left( {{x^2} - 4} \right):m}} = {{\left[ {\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)} \right]:m} \over {\left( {x + 2} \right)\left( {x - 2} \right):m}} \)\(\;= {{{x^2} - 2x + 4} \over {x - 2}}\)

Suy ra VT=VP với mọi m khác 0

Vậy m khác 0

LG bài 2

LG bài 2

Phương pháp giải:

Rút gọn vế trái rồi suy ra P

Lời giải chi tiết:

Ta có : \({{{x^2} + 2x + 1} \over {2{x^2} - 2}} = {{{{\left( {x + 1} \right)}^2}} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}} = {{x + 1} \over {2\left( {x - 1} \right)}}.\)  

Vậy \(P = 2\left( {x - 1} \right) = 2x - 2.\)  

LG bài 3

LG bài 3

Phương pháp giải:

Quy đồng tử thức hai phân thức

Lời giải chi tiết:

Ta có : \({{x - 1} \over {x + 1}} = {{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}} = {{{x^3} - 1} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}.\)  

Vậy \({{{x^3} - 1} \over {{x^2} + 1}}\) và \({{{x^3} - 1} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}\) là hai phân thức có cùng tử thức.

LG bài 4

LG bài 4

Phương pháp giải:

Phân tích các mẫu thành nhân tử rồi quy đồng mẫu thức 3 phân thức

Lời giải chi tiết:

Ta có :

\({1 \over {{a^2} - 4}} = {1 \over {\left( {a - 2} \right)\left( {a + 2} \right)}} = {{{a^2} + 2a + 4} \over {\left( {a - 2} \right)\left( {a + 2} \right)\left( {{a^2} + 2a + 4} \right)}} \)\(\;= {{{a^2} + 2a + 4} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}};\)

\({1 \over {{a^3} - 8}} = {{a + 2} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}}\)

\({1 \over {a + 2}} = {{{a^3} - 8} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}}.\)  

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved