PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 3 - Hình học 9

Đề bài

Cho hai đường tròn đồng tâm (O; R) và (O; R’). Lấy điểm P trên (O; R) kẻ hai tia Px và Py không đi qua O và cắt hai đường tròn lần lượt tại A, B, C ( A, B \( \in \) ( O; R’)) và D, E, F ( E, D \( \in \) (O; R’)). Biết rằng AB < DE. Chứng minh rằng: \(\overparen{ PC}<\overparen{PF}\)

Phương pháp giải - Xem chi tiết

Sử dụng:

Định lí liên hệ giữa dây và khoảng cách đến tâm:

Trong hai dây của một đường tròn:

a) Dây nào lớn hơn thì dây đó gần tâm hơn.

b) Dây nào gần tâm hơn thì dây đó lớn hơn. 




 

Lời giải chi tiết

 

Kẻ \(OH  \bot  AB\) tại H và \(OK  \bot  DE\) tại K.

Ta có: \(AB < DE\) (gt)

\( \Rightarrow  OH > OK\) (định lí liên hệ giữa dây và khoảng cách đến tâm)

Trong đường tròn (O; R) có \(OH > OK\)

\( \Rightarrow  PC < PF\). Do đó \(\overparen{ PC}<\overparen{PF}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved