Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Đề bài
Bài 1. Rút gọn : \(A = \left( {{1 \over {\sqrt {1 + a} }} + \sqrt {1 - a} } \right):\left( {{1 \over {\sqrt {1 - {a^2}} }} + 1} \right)\)\(\,\,\,\,\left( { - 1 < a < 1} \right)\)
Bài 2. Tìm x, biết : \({{\sqrt {{x^2} - 4} } \over {\sqrt {x - 2} }} = 3\,\,\,\,\,\,\left( * \right)\)
Bài 3. Tìm giá trị nhỏ nhất của \(P = {{{x^2} + \sqrt x } \over {x - \sqrt x + 1}} + 1 - {{2x + \sqrt x } \over {\sqrt x }}\,\,\,\,\,\left( {x > 0} \right)\)
LG bài 1
LG bài 1
Phương pháp giải:
Sử dụng \(\sqrt {AB} = \sqrt A .\sqrt B \left( {A,B \ge 0} \right)\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & A = {{1 + \sqrt {1 - {a^2}} } \over {\sqrt {1 + a} }}:{{1 + \sqrt {1 - {a^2}} } \over {\sqrt {1 - {a^2}} }} \cr&= {{1 + \sqrt {1 - {a^2}} } \over {\sqrt {1 + a} }}.{{\sqrt {1 - {a^2}} } \over {1 + \sqrt {1 - {a^2}} }} \cr & = {{\sqrt {\left( {1 - a} \right)\left( {1 + a} \right)} } \over {\sqrt {1 + a} }} = \sqrt {1 - a} \cr} \)
LG bài 2
LG bài 2
Phương pháp giải:
Đặt điều kiện rồi sử dụng \(\frac{{\sqrt A }}{{\sqrt B }} = \sqrt {\frac{A}{B}} \left( {A \ge 0,B > 0} \right)\) để đưa về dạng \(\sqrt A = m\left( {m \ge 0} \right) \Leftrightarrow A = {m^2}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & \left( * \right) \Leftrightarrow \left\{ {\matrix{ {x > 2} \cr {\sqrt {{{{x^2} - 4} \over {x - 2}}} = 3} \cr } } \right. \cr& \Leftrightarrow \left\{ {\matrix{ {x > 2} \cr {\sqrt {x + 2} = 3} \cr } } \right. \cr & \Leftrightarrow \left\{ {\matrix{ {x > 2} \cr {x + 2 = 9} \cr } } \right. \Leftrightarrow x = 7 \cr} \)
LG bài 3
LG bài 3
Phương pháp giải:
Quy đồng rút gọn P rồi biến đổi về dạng \(P = {A^2} + m \ge m\) với mọi \(A\)
Dấu "=" xảy ra khi \(A=0\).
Lời giải chi tiết:
Ta có:
\(P = {{\sqrt x \left[ {{{\left( {\sqrt x } \right)}^3} + 1} \right]} \over {x - \sqrt x + 1}} + 1 - {{\sqrt x \left( {2\sqrt x + 1} \right)} \over {\sqrt x }} \)
\( = {{\sqrt x \left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)} \over {x - \sqrt x + 1}} + 1 - \left( {2\sqrt x + 1} \right) \)
\(= x + \sqrt x + 1 - 2\sqrt x - 1 \)
\(= x - \sqrt x = x - 2\sqrt x .{1 \over 2} + {1 \over 4} - {1 \over 4} \)
\(= {\left( {\sqrt x - {1 \over 2}} \right)^2} - {1 \over 4} \ge - {1 \over 4} \)
Vậy giá trị nhỏ nhất của P là \( - {1 \over 4}\)
Dấu “=” xảy ra khi \(\sqrt x - {1 \over 2} = 0 \Leftrightarrow x = {1 \over 4}\) (thỏa mãn \(x>0\))
A- LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY
Đề thi vào 10 môn Toán Hà Nội
Đề thi vào 10 môn Toán Đà Nẵng
Đề thi vào 10 môn Toán Bình Phước
Văn thuyết minh