Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Đề bài
Bài 1. Tìm x, biết :
a. \(\sqrt {1 - x} > 2\)
b. \(\sqrt {4 - x} \le 2\)
Bài 2. Tìm x, biết: \(\sqrt {{x^2} + 1} - x = 3\)
Bài 3. Chứng minh rằng với mọi x, ta có: \(\sqrt {{x^2} + 4} \ge 2\)
LG bài 1
LG bài 1
Phương pháp giải:
Sử dụng:
\(\begin{array}{l}
\sqrt {f\left( x \right)} > a\left( {a > 0} \right)\\
\Leftrightarrow f\left( x \right) > {a^2}\\
\sqrt {f\left( x \right)} \le a\left( {a > 0} \right)\\
\Leftrightarrow 0 \le f\left( x \right) \le {a^2}
\end{array}\)
Lời giải chi tiết:
a. Ta có:
\(\sqrt {1 - x} > 2 \Leftrightarrow 1 - x > 4 \Leftrightarrow x < - 3\)
b.
\(\eqalign{ & \sqrt {4 - x} \le 2 \Leftrightarrow 0 \le 4 - x \le 4 \cr & \Leftrightarrow \left\{ {\matrix{ {4 - x \ge 0} \cr {4 - x \le 4} \cr } } \right. \Leftrightarrow \left\{ {\matrix{ {x \le 4} \cr {x \ge 0} \cr } } \right. \cr&\Leftrightarrow 0 \le x \le 4. \cr} \)
LG bài 2
LG bài 2
Phương pháp giải:
Sử dụng:
\(\begin{array}{l}
\sqrt {f\left( x \right)} = g\left( x \right)\\
\Leftrightarrow \left\{ \begin{array}{l}
g\left( x \right) \ge 0\\
f\left( x \right) \ge {\left[ {g\left( x \right)} \right]^2}
\end{array} \right.
\end{array}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & \sqrt {{x^2} + 1} - x = 3\cr& \Leftrightarrow \sqrt {{x^2} + 1} = x + 3 \cr & \Leftrightarrow \left\{ {\matrix{ {x + 3 \ge 0} \cr {{x^2} + 1 = {{\left( {x + 3} \right)}^2}} \cr } } \right. \cr & \Leftrightarrow \left\{ {\matrix{ {x \ge - 3} \cr {{x^2} + 1 = {x^2} + 6x + 9} \cr } } \right. \cr & \Leftrightarrow \left\{ {\matrix{ {x \ge - 3} \cr {6x = - 8} \cr } } \right. \Leftrightarrow x = - {4 \over 3} \cr} \)
LG bài 3
LG bài 3
Phương pháp giải:
Sử dụng: \(a \ge b \ge 0 \Leftrightarrow \sqrt a \ge \sqrt b \)
Lời giải chi tiết:
Ta có: \({x^2} \ge 0,\) với mọi x thuộc \(\mathbb R\)
\(\eqalign{ & \Rightarrow {x^2} + 4 \ge 4 \cr & \Rightarrow \sqrt {{x^2} + 4} \ge \sqrt 4 \cr&hay\;\sqrt {{x^2} + 4} \ge 2\,\,(đpcm) \cr} \)
(Có thể bình phương hai vế của bất đẳng thức cần chứng minh).
Unit 10: Life On Other Planets - Sự sống trên các hành tinh khác
Đề thi vào 10 môn Văn Bắc Giang
Bài 11: Trách nhiệm của thanh niên trong sự nghiệp công nghiệp hoá, hiện đại hoá đất nước
Đề thi học kì 2 - Sinh 9
Bài 39. Phát triển tổng hợp kinh tế và bảo vệ tài nguyên, môi trường Biển - Đảo (tiếp theo)