PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 6 - Bài 5 - Chương 3 - Hình học 9

Đề bài

Tam giác ABC đều nội tiếp trong đường tròn (O), D là một điểm trên cung BC. Các đường thẳng AB và CD cắt nhau tại E, AC và BD cắt nhau tại F. Chứng minh rằng: \(AB^2= BE.CF\).

Phương pháp giải - Xem chi tiết

Sử dụng:

+Số đo góc có đỉnh bên ngoài đường tròn

+Số đo góc nội tiếp bằng nửa cung bị chắn

+Tam giác đồng dạng

 

Lời giải chi tiết

 

Ta có :

\(\widehat {BED} =\dfrac {{sd\overparen{AC} - sd\overparen{BD}}}{ 2} \)

\(\;\;\;\;\;\;\;\;\;\,= \dfrac{{sd\overparen{BC} - sd\overparen{BD}} }{ 2}\) (vì \(\overparen{AC} = \overparen{ BC}\))

\(\;\;\;\;\;\;\;\;\;\,=\dfrac{{sd\overparen{DC}} }{ 2}\) ( góc có đỉnh nằm ngoài đường tròn)

\(\widehat {CBF} = \dfrac{{sd\overparen{DC}}}{2}\) ( góc nội tiếp)

\(\Rightarrow \widehat {BED} = \widehat {CBF}\)

Tương tự ta chứng minh được \(\widehat {CFD} = \widehat {BCE}\).

Vậy \(∆BCE\) và \(∆CFB\) đồng dạng (g.g)

\( \Rightarrow \dfrac{{BC} }{ {CF}} =\dfrac {{BE}}{ {BC}}\)

\( \Rightarrow  BC^2= BE.CF\) mà \(BC = AB\) (gt)

\( \Rightarrow  AB^2= BE.CF.\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved