Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Tam giác ABC đều nội tiếp trong đường tròn (O), D là một điểm trên cung BC. Các đường thẳng AB và CD cắt nhau tại E, AC và BD cắt nhau tại F. Chứng minh rằng: \(AB^2= BE.CF\).
Phương pháp giải - Xem chi tiết
Sử dụng:
+Số đo góc có đỉnh bên ngoài đường tròn
+Số đo góc nội tiếp bằng nửa cung bị chắn
+Tam giác đồng dạng
Lời giải chi tiết
Ta có :
\(\widehat {BED} =\dfrac {{sd\overparen{AC} - sd\overparen{BD}}}{ 2} \)
\(\;\;\;\;\;\;\;\;\;\,= \dfrac{{sd\overparen{BC} - sd\overparen{BD}} }{ 2}\) (vì \(\overparen{AC} = \overparen{ BC}\))
\(\;\;\;\;\;\;\;\;\;\,=\dfrac{{sd\overparen{DC}} }{ 2}\) ( góc có đỉnh nằm ngoài đường tròn)
\(\widehat {CBF} = \dfrac{{sd\overparen{DC}}}{2}\) ( góc nội tiếp)
\(\Rightarrow \widehat {BED} = \widehat {CBF}\)
Tương tự ta chứng minh được \(\widehat {CFD} = \widehat {BCE}\).
Vậy \(∆BCE\) và \(∆CFB\) đồng dạng (g.g)
\( \Rightarrow \dfrac{{BC} }{ {CF}} =\dfrac {{BE}}{ {BC}}\)
\( \Rightarrow BC^2= BE.CF\) mà \(BC = AB\) (gt)
\( \Rightarrow AB^2= BE.CF.\)
Bài 24. Vùng Bắc Trung Bộ (tiếp theo)
Đề thi vào 10 môn Toán Bạc Liêu
Đề thi vào 10 môn Văn Lai Châu
Bài 22
Đề kiểm tra 15 phút - Học kì 1 - Sinh 9