PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 6 - Bài 7 - Chương 1 - Hình học 8.

Đề bài

Gọi E, F lần lượt là trung điểm của AB và CD của hình bình hành ABCD.

a) Chứng minh \(AF//CE.\)

b) Chứng minh rằng AF và CE chia đường chéo BD thành ba phần bằng nhau.

Phương pháp giải - Xem chi tiết

Sử dụng:

Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành

Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh đó

Lời giải chi tiết

 

 

a) Ta có E, F lần lượt là trung điểm của AB và CD mà AB = CD và \(AB// CD(gt)\)

\( \Rightarrow AE = CF\) và \(AE//CF\) . Do đó AECF là hình bình hành \( \Rightarrow AF//CE.\)

b) Gọi M, N theo thứ tự là giao điểm của AF, CE với BD.

Ta có E là trung điểm của AB, \(EN// AM\left( {AF//CE} \right) \Rightarrow EN\) là đường trung bình của \(\Delta ABM \Rightarrow N\) là trung điểm của BM hay BN = NM. 

Chứng minh tương tự, xét tam giác DNC, ta có F là trung điểm của DC, \(NC// MF\left( {AF//CE} \right)\)

Do đó, MF là đường trung bình của \(\Delta DNC \Rightarrow MN = MD.\)

Vậy BN = NM = MD.

(Bạn có thể giải cách khác bằng cách nối A với C. Khi đó M, N lần lượt là trọng tâm của các tam giác ADC và BAC. Gọi I là giao điểm của hai đường chéo AC và BD ta có \(BN = 2NI=\frac{2}{3}. BI\); \(DM=2MI =\frac{2}{3}. DI\), BI=DI).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved