PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 7 - Bài 7 - Chương 1 - Hình học 8.

Đề bài

Cho hình bình hành ABCD. Kẻ AH, CK vuông góc với đường chéo BD.

a) Chứng minh AHCK là hình bình hành. 

b) Gọi O là giao điểm của AC và BD, chứng tỏ ba điểm H, O, K thẳng hàng.

Phương pháp giải - Xem chi tiết

Sử dụng:

+) Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

+) Hình bình hành có hai đường chéo giao nhau tại trung điểm mỗi đường.

Lời giải chi tiết

 

a) Vì ABCD là hình bình hành nên \(AD// BC\Rightarrow \widehat {{D_1}} = \widehat {{B_1}}\) (so le trong)

AD = BC (gt)

\(\widehat H = \widehat K = {90^0}\) (do AH và CK cùng vuông góc với BD)

\( \Rightarrow \Delta AHD = \Delta CKB\) (cạnh huyền – góc nhọn)

\( \Rightarrow AH = CK\) và \(AH//CK\) nên tứ giác AKCH là hình bình hành.

b) Ta có O là trung điểm của AC (gt) mà AKCH là hình bình hành (cmt) nên đường chéo thứ hai HK phải qua O hay ba điểm H, O, K thẳng hàng.

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved