Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Đề bài
Bài 1: Cho hình chữ nhật ABCD có \(AB = a, BC = 2a\). Tính diện tích toàn phần và thể tích hình tạo ra khi quay tam giác ABC một vòng quanh AD.
Bài 2: Chi tiết máy có dạng như hình vẽ.
Tính diện tích bề mặt và thể tích của chi tiết đó.
LG bài 1
LG bài 1
Phương pháp giải:
Diện tích toàn phần của hình được tạo ra bằng tổng của diện tích hình tròn bán kính AB với diện tích xung quanh hình trụ có đường sinh BC và diện tích xung quanh hình nón có đường sinh AC
Lời giải chi tiết:
Bài 1: ∆ADC vuông tại D, có : AD = BC = 2a và DC= AB = a.
\( \Rightarrow AC = \sqrt {A{D^2} + D{C^2}} = \sqrt {{{\left( {2a} \right)}^2} + a} = a\sqrt 5 \)
Diện tích toàn phần của hình được tạo ra bằng tổng của diện tích hình tròn bán kính AB với diện tích xung quanh hình trụ có đường sinh BC và diện tích xung quanh hình nón có đường sinh AC.
Stp = πAB2 + 2πAB.BC + πDC.AC
= \(\pi {a^2} + 4\pi {a^2} + \pi a.a\sqrt 5 = \pi {a^2}\left( {5 + \sqrt 5 } \right)\)
Vì ∆ABC = ∆ACD nên hình tạo bởi ∆ABC khi quay xung quanh AD có cùng thể tích với hình tạo bởi ∆ADC khi quay xung quanh AD. Đó là một hình nón và có thể tích :
\({V_n} = {1 \over 3}\pi {R^2}h = {1 \over 3}\pi {a^2}.2a = {{2\pi {a^3}} \over 3}\).
LG bài 2
LG bài 2
Phương pháp giải:
Diện tích xung quanh của hình nón:\({S_n} = \pi Rl \)
Diện tích xung quanh của hình trụ:\({S_t} = 2\pi Rh\)
Thể tích hình trụ:\({V_t} = \pi {R^2}h \)
(Thể tích của chi tiết máy :\(V = {V_t} + 2{V_n}\))
Lời giải chi tiết:
Bài 2: Hình trụ có chiều cao 1m và bán kính đáy là 0,2m : 2 = 0,1m. Hai hình nón bằng nhau có bán kính đáy là 0,1m và có chiều cao là 0,2m, đường sinh AB = l.
Ta có : \(l = AB = \sqrt {A{I^2} + I{B^2}} = \sqrt {{{\left( {0,2} \right)}^2} + {{\left( {0,1} \right)}^2}} = \sqrt {0,05} \left( m \right)\)
Gọi diện tích xung quanh của hình nón : \({S_n} = \pi Rl = \pi .0,1.\sqrt {0,05} \) và diên tích xung quanh của hình trụ : \({S_t} = 2\pi Rh = 2\pi .0,1.1\)
Diện tích bề mặt : \(S = {S_t} + 2{S_n} = 2\pi .0,1 + 2\pi .0,1\sqrt {0,05} \)
=\(0,2\pi \left( {1 + \sqrt {0,05} } \right)\left( {{m^2}} \right) \approx 0,768\left( {{m^2}} \right)\)
Gọi thể tích hình trụ : \({V_t} = \pi {R^2}h = \pi {\left( {0,1} \right)^2}.1\) và thể tích hình nón : \({V_n} = {1 \over 3}\pi {R^2}h = {1 \over 3}\pi {\left( {0,1} \right)^2}.0,2\)
=> \(2{V_n} = {2 \over 3}\pi {\left( {0,1} \right)^2}.0,2\)
Vậy thể tích của chi tiết máy :
\(V = {V_t} + 2{V_n} = \pi {\left( {0,1} \right)^2} + {2 \over 3}\pi {\left( {0,1} \right)^2}.0,2 = 0,01\pi \left( {1 + {{0,4} \over 3}} \right) \approx 0,036\left( {{m^3}} \right)\).
Đề thi vào 10 môn Văn Đăk Lăk
QUYỂN 2. NẤU ĂN
Đề thi học kì 2 mới nhất có lời giải
Đề kiểm tra 15 phút - Chương 9 - Sinh 9
Đề thi vào 10 môn Văn Hà Nội