PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Hình học 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2

Đề bài

Đề bài

Bài 1: Cho hình chữ nhật ABCD có \(AB = a, BC = 2a\). Tính diện tích toàn phần và thể tích hình tạo ra khi quay tam giác ABC một vòng quanh AD.

Bài  2: Chi tiết máy có dạng như hình vẽ.

 

Tính diện tích bề mặt và thể tích của chi tiết đó.

 

LG bài 1

LG bài 1

Phương pháp giải:

Diện tích toàn phần của hình được tạo ra bằng tổng của diện tích hình tròn bán kính AB với diện tích xung quanh hình trụ có đường sinh BC và diện tích xung quanh hình nón có đường sinh AC

Lời giải chi tiết:

Bài 1: ∆ADC vuông tại D, có : AD = BC = 2a và DC= AB = a.

\( \Rightarrow AC = \sqrt {A{D^2} + D{C^2}}  = \sqrt {{{\left( {2a} \right)}^2} + a}  = a\sqrt 5 \)

Diện tích toàn phần của hình được tạo ra bằng tổng của diện tích hình tròn bán kính AB với diện tích xung quanh hình trụ có đường sinh BC và diện tích xung quanh hình nón có đường sinh AC.

          Stp = πAB+ 2πAB.BC + πDC.AC

               = \(\pi {a^2} + 4\pi {a^2} + \pi a.a\sqrt 5  = \pi {a^2}\left( {5 + \sqrt 5 } \right)\)

Vì ∆ABC = ∆ACD nên hình tạo bởi ∆ABC khi quay xung quanh AD có cùng thể tích với hình tạo bởi ∆ADC khi quay xung quanh AD. Đó là một hình nón và có thể tích :

          \({V_n} = {1 \over 3}\pi {R^2}h = {1 \over 3}\pi {a^2}.2a = {{2\pi {a^3}} \over 3}\).

LG bài 2

LG bài 2

Phương pháp giải:

Diện tích xung quanh của hình nón:\({S_n} = \pi Rl \)

Diện tích xung quanh của hình trụ:\({S_t} = 2\pi Rh\)

Thể tích hình trụ:\({V_t} = \pi {R^2}h \)

(Thể tích của chi tiết máy :\(V = {V_t} + 2{V_n}\))

Lời giải chi tiết:

Bài 2: Hình trụ có chiều cao 1m và bán kính đáy là 0,2m : 2 = 0,1m. Hai hình nón bằng nhau có bán kính đáy là 0,1m và có chiều cao là 0,2m, đường sinh AB = l.

Ta có : \(l = AB = \sqrt {A{I^2} + I{B^2}}  = \sqrt {{{\left( {0,2} \right)}^2} + {{\left( {0,1} \right)}^2}}  = \sqrt {0,05} \left( m \right)\)

Gọi diện tích xung quanh của hình nón : \({S_n} = \pi Rl = \pi .0,1.\sqrt {0,05} \) và diên tích xung quanh của hình trụ : \({S_t} = 2\pi Rh = 2\pi .0,1.1\)

Diện tích bề mặt : \(S = {S_t} + 2{S_n} = 2\pi .0,1 + 2\pi .0,1\sqrt {0,05} \)

                                  =\(0,2\pi \left( {1 + \sqrt {0,05} } \right)\left( {{m^2}} \right) \approx 0,768\left( {{m^2}} \right)\)

Gọi thể tích hình trụ : \({V_t} = \pi {R^2}h = \pi {\left( {0,1} \right)^2}.1\) và thể tích hình nón : \({V_n} = {1 \over 3}\pi {R^2}h = {1 \over 3}\pi {\left( {0,1} \right)^2}.0,2\)

                                        => \(2{V_n} = {2 \over 3}\pi {\left( {0,1} \right)^2}.0,2\)

Vậy thể tích của chi tiết máy :

\(V = {V_t} + 2{V_n} = \pi {\left( {0,1} \right)^2} + {2 \over 3}\pi {\left( {0,1} \right)^2}.0,2 = 0,01\pi \left( {1 + {{0,4} \over 3}} \right) \approx 0,036\left( {{m^3}} \right)\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved