PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 3 - Hình học 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2

Đề bài

Đề bài

Bài 1: Cho hình vuông ABCD cạnh a. Lấy M thuộc cạnh AB, N thuộc cạnh AD sao cho \(\widehat {MCN} = 45^\circ \). Gọi E, F lần lượt là giao điểm của CM và CN với BD.

a) Chứng minh tứ giác DCEN nội tiếp.

b) Gọi H là giao điểm của MF và NE. Chứng minh CH vuông góc với MN tại I.

c) Chứng minh MN là tiếp tuyến của đường tròn ngoại tiếp ∆DIB.

Bài 2: Cho đường tròn (O; R) và ba điểm A, B, C sao cho \(sđ\overparen{AC} =30^o\), dây cung \(AB = R\sqrt 3 \) và AB, AC ở về hai phía AO.

a) Tính độ dài cung CAB theo R.

b) Chứng minh : OC // AB.

LG bài 1

LG bài 1

Phương pháp giải:

a.Chứng minh tứ giác DCNE và BCFM nội tiếp và H là trực tâm của tam giác CMN

b.Chứng minh tứ giác MEFN và BCFMN nội tiếp, từ đó chứng minh CI=CB và MN vuông góc với CH

Lời giải chi tiết:

Ta có \(\widehat {ECN} = \widehat {EDN} = 45^\circ \) \( \Rightarrow \) Bốn điểm D, C, E, N cùng thuộc một đường tròn hay tứ giác DCEN nội tiếp.

a)Tứ giác DCEN nội tiếp (cmt) mà \(\widehat {CDN} = 90^\circ \)(gt)

\( \Rightarrow \widehat {CEN} = 90^\circ \) hay \(NE \bot CM.\)

Tương tự ta chứng minh được tứ giác BCFM nội tiếp ( \(\widehat {MBF} = \widehat {MCF} = 45^\circ \))

\( \Rightarrow \widehat {MFC} = \widehat {MBC} = 90^\circ \) hay \(MF \bot CN\) mà MF và NE giao nhau tại H nên H là trực tâm ∆CMN.

\( \Rightarrow \) CH là đường cao hay \(CH \bot MN.\)

b) Ta có tứ giác MEFN nội tiếp ( \(\widehat {MEN} = \widehat {MFN} = 90^\circ \))

\( \Rightarrow \widehat {CMI} = \widehat {CFB}\) ( cùng bù với \(\widehat {NFE}\) )

Lại có tứ giác BCFM nội tiếp (cmt)

\( \Rightarrow \widehat {CMB} = \widehat {CFB}\) ( góc nội tiếp cùng chắn cung BC) \( \Rightarrow \widehat {CMI} = \widehat {CMB}\)

Do đó \(∆CBM = ∆CIM\) ( cạnh huyền – góc nhọn)

\( \Rightarrow  CI = CB = a\) mà \(MN \bot CH\) tại I (cmt) nên MN là tiếp tuyến của đườn tròn ngoại tiếp ∆DIB có tâm C và bán kính bằng a.

 

LG bài 2

LG bài 2

Phương pháp giải:

Sử dụng:

+ Số đo của góc nội tiếp bằng số đo của cung bị chắn

+Công thức: \(l = \frac{{\pi Rn}}{{180}}\)

Lời giải chi tiết:

a) Ta có :\(AB = R\sqrt 3  \Rightarrow \widehat {AOB} = 120^\circ \)

\(sđ\overparen{AC} = 30^o \Rightarrow  \widehat {AOC} = 30^\circ \).

Vậy \(\widehat {BOC} = 150^\circ \).

Khi đó \({l_{\overparen {BAC}}} = \dfrac{{\pi R.150} }{ {180}} =\dfrac {{5\pi R} }{ 6}\).

b)      ∆AOB cân tại O có \(\widehat {AOB} = 120^\circ \)

\( \Rightarrow \widehat {OAB} = \widehat {OBA} =\dfrac {{180^\circ  - 120^\circ }}{2}\)\(\, = 30^\circ \)

Do đó \(\widehat {OAB} = \widehat {AOC} = 30^\circ \)

\( \Rightarrow \) OC // AB ( cặp góc so le trong bằng nhau).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved