1. Nội dung câu hỏi
Trên đường tròn lượng giác lấy điểm \(M\) sao cho \(\left( {OA,OM} \right) = {40^o}\). Gọi \(M'\) là điểm đối xứng với \(M\) qua gốc toạ độ. Khi đó số đo của góc lượng giác \(\left( {OA,OM'} \right)\) bằng:
A. \({40^o} + k{360^o}\)
B. \({140^o} + k{360^o}\)
C. \({220^o} + k{360^o}\)
D. \({50^o} + k{360^o}\)
2. Phương pháp giải
Tính số đo \(\left( {OM,OM'} \right)\)
Sử dụng hệ thức Chasles: \(\left( {OA,OM'} \right) = \left( {OA,OM} \right) + \left( {OM,OM'} \right) + k{360^o}\)
3. Lời giải chi tiết
Ta có \(\left( {OA,OM} \right) = {40^o}\).
Do \(M'\) đối xứng với \(M\) qua \(O\), ta suy ra \(\left( {OM,OM'} \right) = {180^o}\)
Do đó, \(\left( {OA,OM'} \right) = \left( {OA,OM} \right) + \left( {OM,OM'} \right) + k{360^o} = {220^o} + k{360^o}\)
Đáp án đúng là C.
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Vật lí lớp 11
Chủ đề 2: Giao cầu
Chuyên đề 1. Phép biến hình phẳng
Giáo dục pháp luật
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11