Bài 1 trang 168 SBT hình học 12

Đề bài

Cho lăng trụ ABC.A'B'C'

a) Tính tỉ số \(\frac{{{V_{ACA'B'}}}}{{{V_{ABC.A'B'C'}}}}\)

b) Tính VACA'B' biết rằng tam giác ABC là tam giác đều cạnh bằng a, AA' = b và AA' tạo với (ABC) một góc bằng 60o

Lời giải chi tiết

a) Ta có: VACA'B' = VB'.ACA' = VB'.CA'C' = VC.A'B'C' = VABC.A'B'C'/3

Từ đó suy ra tỉ số phải tìm bằng 1/3.

b) Gọi H là chân đường cao đi qua A của lăng trụ.

\( \Rightarrow \left( {AA',\left( {A'B'C'} \right)} \right) = \left( {AA',A'H} \right)\) \( = \widehat {AA'H} = {60^0}\)

Tam giác vuông AA’H có \(AH = AA'\sin {60^0} = \frac{{b\sqrt 3 }}{2}\)

Lại có \({S_{A'B'C'}} = \frac{1}{2}A'B'.A'C'.\sin \widehat {B'A'C'}\) \( = \frac{1}{2}.a.a.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{4}\)  

Do đó: \({V_{ABC.A'B'C'}} = {S_{A'B'C'}}.AH\) \( = \frac{{{a^2}\sqrt 3 }}{4}.\frac{{b\sqrt 3 }}{2} = \frac{{3{a^2}b}}{8}\)

Suy ra \({V_{ACA'B'}} = \frac{1}{3}{V_{ABC.A'B'C'}} \) \(= \frac{1}{3}.\frac{{3{a^2}b}}{8} = \frac{{{a^2}b}}{8}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved