1. Nội dung câu hỏi
Không dùng máy tính cầm tay. Tính giá trị của các biểu thức sau:
a) \(\sin \frac{{19\pi }}{{24}}\cos \frac{{37\pi }}{{24}}\);
b) \(\cos \frac{{41\pi }}{{12}} - \cos \frac{{13\pi }}{{12}}\);
c) \(\frac{{\tan \frac{\pi }{7} + \tan \frac{{3\pi }}{{28}}}}{{1 + \tan \frac{{6\pi }}{7}\tan \frac{{3\pi }}{{28}}}}\).
2. Phương pháp giải
Sử dụng kiến thức về các công thức lượng giác để tính:
a) \(\sin \alpha \cos \beta = \frac{1}{2}\left[ {\sin \left( {\alpha - \beta } \right) + \sin \left( {\alpha + \beta } \right)} \right]\)
b) \(\cos \alpha - \cos \beta = - 2\sin \frac{{\alpha + \beta }}{2}\sin \frac{{\alpha - \beta }}{2}\)
c) \(\tan \left( {\alpha + \beta } \right) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}\)
3. Lời giải chi tiết
a) \(\sin \frac{{19\pi }}{{24}}\cos \frac{{37\pi }}{{24}} \) \( = \frac{1}{2}\left[ {\sin \left( {\frac{{19\pi }}{{24}} + \frac{{37\pi }}{{24}}} \right) + \sin \left( {\frac{{19\pi }}{{24}} - \frac{{37\pi }}{{24}}} \right)} \right] \) \( = \frac{1}{2}\left( {\sin \frac{{7\pi }}{3} + \sin \frac{{ - 3\pi }}{4}} \right)\)
\( \) \( = \frac{1}{2}\left( {\sin \frac{{7\pi }}{3} - \sin \frac{{3\pi }}{4}} \right) \) \( = \frac{1}{2}\left( {\sin \left( {2\pi + \frac{\pi }{3}} \right) - \sin \frac{{3\pi }}{4}} \right) \) \( = \frac{1}{2}\left( {\sin \frac{\pi }{3} - \sin \frac{{3\pi }}{4}} \right)\)
\( \) \( = \frac{1}{2}\left( {\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 2 }}{2}} \right) \) \( = \frac{{\sqrt 3 - \sqrt 2 }}{4}\)
b) \(\cos \frac{{41\pi }}{{12}} - \cos \frac{{13\pi }}{{12}} \) \( = - 2\sin \frac{{\frac{{41\pi }}{{12}} + \frac{{13\pi }}{{12}}}}{2}\sin \frac{{\frac{{41\pi }}{{12}} - \frac{{13\pi }}{{12}}}}{2} \) \( = - 2\sin \frac{{9\pi }}{4}\sin \frac{{7\pi }}{6}\)
\( \) \( = - 2\sin \left( {2\pi + \frac{\pi }{4}} \right)\sin \left( {\pi + \frac{\pi }{6}} \right) \) \( = 2\sin \frac{\pi }{4}\sin \frac{\pi }{6} \) \( = 2.\frac{{\sqrt 2 }}{2}.\frac{1}{2} \) \( = \frac{{\sqrt 2 }}{2}\)
c) \(\frac{{\tan \frac{\pi }{7} + \tan \frac{{3\pi }}{{28}}}}{{1 + \tan \frac{{6\pi }}{7}\tan \frac{{3\pi }}{{28}}}} \) \( = \frac{{\tan \frac{\pi }{7} + \tan \frac{{3\pi }}{{28}}}}{{1 + \tan \left( {\pi - \frac{\pi }{7}} \right)\tan \frac{{3\pi }}{{28}}}} \) \( = \frac{{\tan \frac{\pi }{7} + \tan \frac{{3\pi }}{{28}}}}{{1 - \tan \frac{\pi }{7}\tan \frac{{3\pi }}{{28}}}} \) \( = \tan \left( {\frac{\pi }{7} + \frac{{3\pi }}{{28}}} \right) \) \( = \tan \frac{\pi }{4} \) \( = 1\).
Bài 12: Tiết 1: Khái quát về Ô-xtrây-li-a - Tập bản đồ Địa lí 11
Đề thi giữa kì 1
Chủ đề 4. Dòng điện. Mạch điện
Unit 0: Introduction
Câu hỏi tự luyện Sinh 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11