Bài 1 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo

1. Nội dung câu hỏi

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:

\(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\). Viết phương trình ảnh của (C) qua phép đối xứng tâm O.

 

2. Phương pháp giải

Tìm ảnh của tâm I qua phép đối xứng. Áp dụng:

Nếu \(M'{\rm{ }} = {\rm{ }}{Đ_I}\left( M \right)\) thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)

 

3. Lời giải chi tiết

Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\) có tâm I(2; 0), bán kính \(R = \sqrt {{2^2} + {0^2} - \left( { - 5} \right)}  = 3\)

Gọi đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng tâm O.

Suy ra đường tròn (C’) có tâm là ảnh của I(2; 0) và bán kính \(R'{\rm{ }} = {\rm{ }}R{\rm{ }} = {\rm{ }}3.\)

Gọi \(I' = {\rm{ }}{Đ_O}\left( I \right),\) suy ra O là trung điểm II’ với I(2; 0).

Do đó \(\left\{ \begin{array}{l}{x_{I'}} = 2{x_O} - {x_I} = 2.0 - 2 =  - 2\\{y_{I'}} = 2{y_O} - {y_I} = 2.0 - 0 = 0\end{array} \right.\)

Vì vậy tọa độ \(I'\left( {-2;{\rm{ }}0} \right).\)

Vậy đường tròn (C’) có tâm I’(–2; 0) và bán kính R’ = 3 có phương trình là:

\({\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\; + {\rm{ }}{y^2}\; = {\rm{ }}9.\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved