1. Nội dung câu hỏi
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
\(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\). Viết phương trình ảnh của (C) qua phép đối xứng tâm O.
2. Phương pháp giải
Tìm ảnh của tâm I qua phép đối xứng. Áp dụng:
Nếu \(M'{\rm{ }} = {\rm{ }}{Đ_I}\left( M \right)\) thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)
3. Lời giải chi tiết
Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\) có tâm I(2; 0), bán kính \(R = \sqrt {{2^2} + {0^2} - \left( { - 5} \right)} = 3\)
Gọi đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng tâm O.
Suy ra đường tròn (C’) có tâm là ảnh của I(2; 0) và bán kính \(R'{\rm{ }} = {\rm{ }}R{\rm{ }} = {\rm{ }}3.\)
Gọi \(I' = {\rm{ }}{Đ_O}\left( I \right),\) suy ra O là trung điểm II’ với I(2; 0).
Do đó \(\left\{ \begin{array}{l}{x_{I'}} = 2{x_O} - {x_I} = 2.0 - 2 = - 2\\{y_{I'}} = 2{y_O} - {y_I} = 2.0 - 0 = 0\end{array} \right.\)
Vì vậy tọa độ \(I'\left( {-2;{\rm{ }}0} \right).\)
Vậy đường tròn (C’) có tâm I’(–2; 0) và bán kính R’ = 3 có phương trình là:
\({\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\; + {\rm{ }}{y^2}\; = {\rm{ }}9.\)
Tải 10 đề thi giữa kì 1 Sinh 11
Chủ đề 2: Kĩ thuật di chuyển và chuyền bóng
Đề thi giữa kì 2
Tác giả - Tác phẩm Ngữ văn 11 tập 2
Unit 7: Artists
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11