Bài 1 trang 29

Đề bài

Kiểm tra xem mỗi cặp số (x;y) đã cho có là nghiệm của hệ bất phương trình tương ứng không.

a) \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\)  \(\left( {0;2} \right),\left( {1;0} \right)\)

b) \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\)  \(\left( { - 1; - 3} \right),\left( {0; - 3} \right)\)

Phương pháp giải - Xem chi tiết

- Thay từng cặp số vào mỗi hệ.

- Nếu thỏa mãn thì đó là nghiệm của hệ bất phương trình tương ứng.

Lời giải chi tiết

a) Thay \(x = 0,y = 2\) vào hệ \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}3.0 + 2.2 \ge  - 6\\0 + 4.2 > 4\end{array} \right.\) (Đúng)

Thay \(x = 1,y = 0\) vào hệ \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}3.1 + 2.0 \ge  - 6\\1 + 4.0 > 4\left( {Sai} \right)\end{array} \right.\)

Vậy \(\left( {0;2} \right)\) là nghiệm của hệ còn \(\left( {1;0} \right)\) không là nghiệm.

b) Thay \(x =  - 1,y =  - 3\) vào hệ \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}4.\left( { - 1} \right) + \left( { - 3} \right) \le  - 3\\ - 3\left( { - 1} \right) + 5.\left( { - 3} \right) \ge  - 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 7 \le  - 3\\ - 12 \ge  - 12\end{array} \right.\) (Đúng)

Thay \(x = 0,y =  - 3\) vào hệ \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}4.0 + \left( { - 3} \right) \le  - 3\\ - 3.0 + 5.\left( { - 3} \right) \ge  - 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le  - 3\\ - 15 \ge  - 12\left( {Sai} \right)\end{array} \right.\)

Vậy \(\left( { - 1; - 3} \right)\) là nghiệm của hệ còn \(\left( {0; - 3} \right)\) không là nghiệm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved