1. Nội dung câu hỏi
Cho \(\sin \alpha = \frac{3}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau:
a) \(\sin 2\alpha \);
b) \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\);
c) \(\tan \left( {2\alpha - \frac{\pi }{4}} \right)\).
2. Phương pháp giải
+ Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\).
+ Sử dụng kiến thức về góc nhân đôi để tính \(\tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }};\sin 2\alpha = 2\sin \alpha \cos \alpha \)
+ Sử dụng kiến thức về công thức cộng để tính: \(\cos \left( {\alpha + \beta } \right) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \); \(\tan \left( {\alpha - \beta } \right) = \frac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}\)
3. Lời giải chi tiết
Vì \(\frac{\pi }{2} < \alpha < \pi \Rightarrow \cos \alpha < 0\)
Do đó, \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{3}{4}} \right)}^2}} = - \frac{{\sqrt 7 }}{4}\)
a) \(\sin 2\alpha = 2\sin \alpha \cos \alpha = 2.\frac{3}{4}.\frac{{ - \sqrt 7 }}{4} = \frac{{ - 3\sqrt 7 }}{8}\);
b) \(\cos \left( {\alpha + \frac{\pi }{3}} \right) = \cos \alpha \cos \frac{\pi }{3} - \sin \alpha \sin \frac{\pi }{3} = \frac{{ - \sqrt 7 }}{4}.\frac{1}{2} - \frac{3}{4}.\frac{{\sqrt 3 }}{2} = \frac{{ - \sqrt 7 - 3\sqrt 3 }}{8}\);
c) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{3}{4}}}{{\frac{{ - \sqrt 7 }}{4}}} = \frac{{ - 3\sqrt 7 }}{7}\), \(\tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} = 3\sqrt 7 \)
\(\tan \left( {2\alpha - \frac{\pi }{4}} \right) = \frac{{\tan 2\alpha - \tan \frac{\pi }{4}}}{{1 + \tan 2\alpha .\tan \frac{\pi }{4}}} = \frac{{3\sqrt 7 - 1}}{{1 + 3\sqrt 7 .1}} = \frac{{{{\left( {3\sqrt 7 - 1} \right)}^2}}}{{\left( {3\sqrt 7 - 1} \right)\left( {1 + 3\sqrt 7 } \right)}} = \frac{{32 - 3\sqrt 7 }}{{31}}\).
Unit 2: Get well
Chủ đề 2: Kĩ thuật dừng bóng và kĩ thuật đánh đầu
SBT Ngữ văn 11 - Cánh Diều tập 1
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VI - Hóa học 11
Chủ đề 2: Kĩ thuật di chuyển và chuyền bóng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11