Đề bài
Tìm bất phương trình có miền nghiệm là miền không gạch chéo (kể cả bờ d) trong hình 4 (mỗi ô vuông có cạnh là 1 đơn vị)
Phương pháp giải - Xem chi tiết
Bước 1: Gọi phương trình tổng quát của đường thẳng bờ
Bước 2: Xác định các điểm đường thẳng đi qua và xác định phương trình
Bước 3: Thay tọa độ điểm O(0;0) là nghiệm của bất phương trình cần tìm và xác định dấu của bất phương trình
Lời giải chi tiết
Vì bờ của bất pương trình có dạng là đường thẳng tuyến tính nên phương trình tổng quát có dạng \(y = ax + b\)
Dựa vào hình 4 ta thấy đường thẳng đi qua điểm có tọa độ (6;0) và (0;3)
Thay tọa độ 2 điểm trên vào phương trình tổng quát ta có hệ phương trình hai ẩn như sau: \(\left\{ \begin{array}{l}0 = 6a + b\\3 = 0a + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{2}\\b = 3\end{array} \right.\)
Vậy phương trình bờ là \(y = - \frac{1}{2}x + 3 \Rightarrow F = \frac{1}{2}x + y - 3\)
Thay \(x = 0,y = 0\) vào phương trình trên ta có \(F = 3 > 0\)
Mặt khác ta thấy gốc tọa độ là nghiệm của bất phương trình (theo hình vẽ) và chứa cả bờ nên ta có bất phương trình cần tìm là \(\frac{1}{2}x + y - 3 \ge 0\)
Chủ đề 2. Bảng tuần hoàn các nguyên tố hóa học
Nắng đã hanh rồi
Đề thi giữa kì 2
Unit 2: Entertainment
Đề kiểm tra 15 phút học kì II
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10