SBT Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 1 - Mục Bài tập trang 55

1. Nội dung câu hỏi

Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh \(a\sqrt 2 \). Biết rằng \(SA = SB = SC = SD,SO = 2a\sqrt 2 \).

a) Chứng minh rằng \(SO \bot \left( {ABCD} \right)\).

b) Tính độ dài đường cao xuất phát từ đỉnh A của tam giác SAC.


2. Phương pháp giải

Sử dụng kiến thức về định lí đường thẳng vuông góc với mặt phẳng để chứng minh: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng \(\left( \alpha  \right)\) thì \(d \bot \left( \alpha  \right)\).

 

3. Lời giải chi tiết 

a) Vì ABCD là hình vuông tâm O nên O là trung điểm của AC, O là trung điểm của BD.

Vì \(SA = SC\) nên tam giác SAC cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác SAC. Do đó, \(SO \bot AC\)

Vì \(SB = SD\) nên tam giác SBD cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác SBD. Do đó, \(SO \bot BD\)

Vì \(SO \bot AC\), \(SO \bot BD\), AC và BD cắt nhau và nằm trong mặt phẳng (ABCD).

Do đó, \(SO \bot \left( {ABCD} \right)\)

b) Kẻ \(AH \bot SC\left( {H \in SC} \right)\)

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

\(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}}  = 2a\)

Suy ra: \(OC = \frac{{AC}}{2} = a\)

Vì \(SO \bot \left( {ABCD} \right),OC \subset \left( {ABCD} \right) \Rightarrow SO \bot OC\)

Áp dụng định lí Pythagore vào tam giác SOC vuông tại O có:

\(SC = \sqrt {O{C^2} + S{O^2}}  = \sqrt {{a^2} + {{\left( {2a\sqrt 2 } \right)}^2}}  = 3a\)

Ta có: \(AH.SC = SO.AC\left( { = 2{S_{\Delta SAC}}} \right) \Rightarrow AH = \frac{{SO.AC}}{{SC}} = \frac{{2a\sqrt 2 .2a}}{{3a}} = \frac{{4a\sqrt 2 }}{3}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved